
1. Coordinates

In order to locate a point in space one needs directions on how to reach it from some
other known point. For example, suppose you are in a city and you want get to 1001 Tenth
Street, 9th floor. If your starting point is First Street and Fifth Avenue and you asked for
directions you might get the following instructions: “Go 5 blocks west along Fifth Avenue
to Tenth Street and then go right on Tenth street until you get to the building with number
1001”. Once there, you would get to the 9th floor by taking an elevator. In your journey you
used several rulers (numbered or scaled lines) to guide you and tell you when to make certain
decisions about your getting to the place you wanted to go. The first two rulers were streets
and the units of measurement were blocks or addresses of buildings. The last ruler was
the path of the elevator numbered by the floor indicator. Whether the streets and avenues
were at right angles or not was of no importance. What was important was that you went
the correct distance in the right direction. In analytic geometry, the process of assigning
addresses to points is called coordinatisation, the addresses being a sequence of numbers,
called coordinates, with references to different rulers which make up the coordinate
frame. In our example above, the place we wanted to go would have coordinates (10, 1001, 9)
where the first number located the street, the second was the number of the building and
the third was the floor.

1.1. Line Coordinates. If one is restricted to move on a given line L, then a single number
suffices to specify one’s location on that line once we specify an origin O and a point I
of unit distance from the origin. The point I is called a unit point. A point P which is
x units away from the origin is given the coordinate x. The number x can be positive or
negative, the sign determining which side of the origin we are on. The origin has coordinate
0 and the unit point has coordinate 1. In this way, each point P of the line L is given a
coordinate x = x(P ). We obtain an ordering of the points of the line as follows: given points
A,B on the line, we have A < B in this ordering if and only if x(A) < x(B).

Such a numbered line is called a ruler. The numbering on the line L is determined by
the function x which assigns to each point P of L its coordinate x = x(P ). For this reason,
we will denote the ruler by x. If A,B are two points of L, we let

AB = x(B)− x(A).

be the oriented length of the line segment AB. It is positive if and only if A < B in the
ordering of L specified by the ruler x. The length of AB with respect to the ruler x is

|AB| = |AB| = |x(B)− x(A)|,
where the absolute value |c| is defined to be c if c ≥ 0 and −c otherwise.

If we change the origin or unit point (or both), we obtain another ruler x′. The coordinates
of a point P relative to these two rulers are related by the formula

x(P ) = bx′(P ) + a.

The new origin O′ has coordinate x′(O′) = 0 relative to second ruler; so a = x(O′), the
coordinate of the O′ with respect to the first ruler. The new unit point I ′ has coordinate
x(I ′) = a + b and b = x(I ′)− x(O′) is the scale factor between the rulers. The coordinate
of P , relative to the second ruler, is therefore

x′(P ) = b−1(x(P )− a)

Since
x(B)− x(A) = b(x′(B)− x′(A)),
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the two rulers x and x′ give the same number for the length of AB iff the scale factor
b = ±1. The two rulers define the same ordering or orientation if b > 0. If b < 0, they
define opposite orderings or orientations. Thus a line has only two orderings or orientations.

Example. If C is the temperature in the Celsius scale and F the temperature in the
Fahreheit scale, we have

C =
5
9
(F − 32) =

5
9
F − 17

7
9
, F =

9
5
C + 32.

Zero degrees Celsius is the same as 32 degrees Fahrenheit and zero degrees Fahreheit is
−177

9 degrees Celcius. The scale factor from the Fahreheit scale to Celcius scale is 9/5 since
a change in temperature of one degree Celsius is a change in temperature of 9/5 degrees
Fahrenheit.

1.2. Exercises. 1. If P is a point on a line having coordinate t with respect to a ruler x, find
the coordinate of t with respect to the ruler x′ having origin the point O′ with x-coordinate
12 and unit point the point A′ with x-coordinate 18. What are the x′-coordinates of the
origin and unit point of x?

2. Let A,B be distinct points on line L and let C be the midpoint of the line segment AB
of L. If a, b are the coordinates of A, B for some ruler, show that the coordinate of C is
(a + b)/2. Show also that C is the unique point with AC/CB = 1.

3. Let A, B be distinct points on a line L. Show that for each real number c 6= −1 there is
a unique point P of L with AP/PB = c.

1.3. Plane coordinates. We now consider the case where we are in a plane Π. To introduce
coordinates we need to choose two lines L1, L2 in Π meeting in a point O and two rulers x, y
on L1, L2 respectively with the same origin O. One can think of the lines of Π parallel to
L1 as streets and the lines parallel to L2 as avenues. To find out what avenue or street you
are on, look at its intersection with L1 or L2 respectively; the line coordinate of the point
of intersection gives the name. For example, the line L1 would be 0-th street and L2 would
be 0-th avenue. If P is the point in the plane Π which is at the intersection of a-th avenue
and b-th street, then the coordinates of P are

x(P ) = a, y(P ) = b.

The pair (x(P ), y(P )) is called the coordinate vector of P . The line L1 is called the x-axis
and the line L2 is called the y-axis.

The x-axis is the set of points P with y(P ) = 0; in other words, it has the equation
y = 0. The y-axis has the equation x = 0. More generally, a line parallel to the x-axis
has the equation y = a while a line parallel to the y-axis has equation x = a. If we denote
by P (a, b) the point P with coordinate vector (a, b), then P (a, b) is the intersection of the
lines x = a, y = b. If I, J are respectively the unit points for the rulers x, y, then the triple
(O, I, J) completely determines L1, L2 and the rulers x, y; it is called a coordinate frame.
The pair (x, y) is called a coordinate system for the plane Π.

If we change the scale on Li by a factor of bi we obtain a new coordinate frame (O, I ′, J ′)
with x(I ′) = b1, y(J ′) = b2. If (x′, y′) is the associated coordinate system, we have

x(P ) = b1x
′(P ), y(P ) = b2y

′(P ).

The formula for a general change of coordinates will be derived later. If L1 and L2 are
perpendicular and we use the same scale on both coordinate axes, the coordinate system is
said to be rectangular. While rectangular coordinates are most often used, we shall see
that non-rectangular coordinates can be very useful in solving problems. Such coordinates
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are also called affine coordinates. When we use different scales for the coordinate axes, in
order that a curve we are graphing fits on the page, we in fact are using affine coordinates.
We shall see that having the freedom to chose our axes to be oblique (non-rectangular) will
enormously simplify the graphing of plane curves such as conics.

Problem 1.1. Let x, y be a rectangular coordinate system. Sketch the curve whose equation
in the coordinate system x′, y′ associated to the frame

(O′(−3, 4), I ′(−2, 3), J ′(−1, 5))

is x′ = y′2. This curve is called a parabola.

1.4. Exercises. 1. Draw two oblique intersecting lines on a sheet of paper and construct a
ruler on each line, with center the point of intersection of the two lines, by chosing a unit
point on each line. Plot the points (10, 3), (3, 10), (−4, 0), (−4, 2), (−3,−5/2), (3/2,−5),
draw the lines x = 4, y = −2 and sketch the curve y = x2. This curve is called a parabola.

2. In an affine coordinate system x, y in which the axes are perpendicular but the scale on
the x−axis is twice that on the y−axis, sketch the curve x2 + y2 = 4. What is the equation
of this curve if you use the frame O(0, 0), I(1, 0), J(0, 1/2)? This curve is called an ellipse.

3. Draw the coordinate axes for a rectangular coordinate system and plot the points 0′(2, 3),
I ′(3, 1), J ′(3, 4). If x′, y′ is the coordinate system with the frame O′, I ′, J ′, sketch the curve
whose equation is x′y′ = 1. This curve is called a hyperbola.

1.5. Space Coordinates. Now suppose that we are not restricted to lie on a plane. To
introduce a system of coordinates, we need to choose three non-coplanar lines L1, L2, L3

which meet in a point O and rulers x, y, z on L1, L2, L3 respectively, each with origin O.
The plane containing the rulers x and y is called the xy-plane. Any point in this plane has
well-defined x and y-coordinates.

Any point P lies on some plane which is parallel to the xy-plane. The level of this plane
is defined to be the coordinate of the point of intersection of this plane with the line L3. If P
is on level c we define the z-coordinate of P to be z(P ) = c. The x and y-coordinates x(P ),
y(P ) of P are obtained as follows: Let Q be the point of intersection of the line through
P , parallel to L3, with the xy-plane. Then x(P ) = x(Q) and y(P ) = y(Q). The triple
(x(P ), y(P ), z(P )) is called the coordinate vector of P .

The xy−plane has equation z = 0 and any plane parallel to it has equation z = a.
Similarly, the planes parallel to the xz-plane have equation y = a while the equations
parallel to the yz-plane have equation x = a. The x-axis is the intersection of the xy and
xz-planes and has equation y = z = 0. The y-axis is the intersection of the yz and xy-planes
and has equation x = z = 0 while the z-axis is the intersection of the yz and xz-planes and
has equation x = y = 0.

If P (a, b, c) denotes the point P with coordinate vector (a, b, c), then P (a, b, c) is the
intersection of the planes x = a, y = b, z = c. If I, J,K are respectively the unit points for
the rulers x, y, z, the triple (O, I, J,K) completely determines the lines L1, L2, L3 and the
rulers x, y, z, and is called a coordinate frame. The triple (x, y, z) is called a coordinate
system.

If we change the scale on Li by a factor of bi we obtain a new coordinate frame

(O, I ′, J ′, K ′)
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with x(I ′) = b1, y(J ′) = b2 and z(K ′) = b3. If (x′, y′, z′) is the associated coordinate system,
we have

x(P ) = b1x
′(P ), y(P ) = b2y

′(P ), z(P ) = b3z
′(P ).

The formula for a general change of coordinates will be derived later. If the lines Li are
mutually perpendicular and we use the same scale on each of the coordinate axes, the
coordinate system is said to be rectangular. Otherwise, it said to be affine.

1.6. Plane Drawings. Plane drawings of objects in space are actually projections of the
object. For example, this is the case when we are outside during the day and we see our
shadow on the ground or wall which act as screens upon which an image is projected. The
light rays from the sun travel on parallel lines and light which strikes an object is prevented
from continuing, resulting in a shadow at the point of the screen where the ray would have
struck. The higher the sun is in the sky the shorter the shadows for objects pointing straight
up. Geometrically, the transformation (function) which sends a point to its shadow on the
wall or ground is called parallel projection and we use this to draw planar pictures of
objects in space. To do this, we imagine a screen behind the object in space and try to
visualize its projection on the screen by choosing suitable points on the boundary of the
object and plotting the projections on the screen. The projection of a point P parallel to
a given line L is the intersection of the line through the point P and parallel to L with the
plane of the screen. The basic thing to remember is that lines project to lines except for
lines that point in directly our direction of sight; they project to points. Also parallel lines
which do not point directly at us project to parallel lines and line segments appear shorter
the more they are aligned with our line of sight. Useful information about the shape of
the surface can be obtained by drawing the projections of the intersections of the surface
with planes parallel to the coordinate planes. We will discuss this in more detail in a later
section.

The things we see with our eyes are also projections on our retinas. But, because the
lens of the eye focuses light, the images we see are central projections. The farther an
object is, the smaller the projection, and lines parallel to our direction of sight appear to
converge in the distance. This is the type of projection used when one draws ‘in perspective’.
Geometrically, a central projection, with center A, onto a plane Π not containing A is the
function which sends a point P which is not on the plane Π′ through A parallel to Π into
the point of intersection of Π with the line through A and P . The plane Π′ is called the
vanishing plane. For simplicity, we will use only parallel projections to make our plane
drawings.

1.7. Exercises. 1. Draw the coordinate axes of a coordinate system in space as seen from
the point (10, 10, 10). Choosing unit points on each axis, plot the points (0, 4, 7), (4, 2, 0),
(1, 9,−2), (−2,−4, 0).

2. Draw the box whose vertices have the coordinates (2, 2, 0), (2, 2, 3), (2, 6, 3), (2, 6, 0),
(5, 6, 0), (5, 2, 0), (5, 2, 3), (5, 6, 3). Do this for both a rectangular and a non-rectangular
coordinate system.

3. Sketch the surface x2 + y2 = z2.



5

2. Geometrical Vectors

A vector is usually described as something that has direction and magnitude and is rep-
resented geometrically by a directed line segment , namely, a line segment AB together
with one of its two orderings or orientations. The length of the line segment and its or-
dering represent respectively the magnitude and direction of the vector. This directed line
segment is completely determined by the pair (A,B) consisting respectively of its initial
and terminal points. The direction of the line segment is indicated by an arrowhead at the
terminal point and is denoted by

−−→
AB. A directed line segment is called a bound vector

because the initial point is fixed. Such vectors are used to represent forces geometrically
since the point of application of a force is fixed.

If A,B are points on a line L and x is a ruler with on L with c = x(B)−x(A), the bound
vector

−−→
AB is equivalent to the instruction “Starting at A, go c units along L” since this

completely determines B. The sign of c gives the direction to take along L. If we remove
the first part of the instruction “Starting at A”, then the instruction becomes “Go c units
along L”. This can be viewed as a vector in which the initial point is allowed to be any
point of L; this type of vector is called a sliding vector. If we allow the initial point to be
any point in space and modify the instruction to read “Go c units parallel to L”, we obtain
was is called a free vector. Geometrically, it is what is called a translation. A translation
is a function which sends points to points and has the following property: If P is sent to
P ′ and Q to Q′ by the translation, then PP ′, QQ′ are parallel and PQ, P ′Q′ are parallel.
Given points A, B, there is a unique translation which sends A to B.

Vectors are denoted by letters with arrows over them, for example, −→v . The free vector
which sends the point A to the point B is also denoted by

−−→
AB. This will not cause any

confusion since, unless otherwise indicated, a geometrical vector will be taken to be free.
Every bound vector

−−→
AB uniquely determines a free vector, namely, the translation which

sends A to B. Two bound vectors
−−→
AB and

−−−→
A′B′ determine the same free vector if and only

if the translation which takes A to A′ also takes B to B′. Two such bound vectors are called
equivalent.

A free vector −→v can be defined by choosing a ruler x on a line L and a number b
representing how far we want to move in the direction parallel to L. Thus the free vector

−→v = “Go b units in the x-direction”

is defined as follows: If P is on L, then the point Q to which P is sent is the unique point Q
with x(Q) = x(P ) + b. If P is any point, we can, by means of parallel projection, transport
the ruler x to a ruler x′ on the line L′ parallel to L and passing through P . Then the image
of P is the unique point Q of L′ with x′(Q) = x′(P ) + b. For this reason, we let

P +−→v
denote the point Q resulting from the translation of P by −→v .

If −→v is the geometrical vector which sends P to a point b units in a given direction and
c is a number, we let c−→v be the geometrical vector which sends P to a point cb units in the
given direction. We have

(c + d)−→v = c−→v + d−→v .

If c = 0, then P + c−→v = P for any point P ; in other words

0 · −→v = “Go 0 units in the x-direction”.

This geometrical vector is called the zero vector and is denoted by
−→
0 . A vector −→v is said

to be parallel to the non-zero vector −→u if −→v is proportional to −→u , i.e., −→v = c−→u for some
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number c. If −→u =
−−→
AB, then c

−−→
AB =

−→
AC for a unique point C with A, B, C collinear and

cAB = AC. This can also be used as the definition of c
−−→
AB when

−−→
AB is a bound geometrical

vector.
If −→u and −→v are two geometrical vectors, then −→u +−→v is the geometrical vector defined

by
P + (−→u +−→v ) = (P +−→u ) +−→v .

This is well defined since one translation followed by another is again a translation; if
−→u =

−−→
AB and −→v =

−−→
BC, we have

−−→
AB +

−−→
BC =

−→
AC.

This is the triangle law for addition of geometrical vectors. For example, going 3 miles
east and then 3 miles north gets you to the same place as going 3

√
2 miles northeast. In

addition, if D = A +
−−→
BC, we have

−−→
AD =

−−→
BC and

−−→
CD =

−−→
AB. Thus

−−→
AB +

−−→
AD =

−−→
AD +

−−→
AB =

−→
AC,

which is the parallelogram law for addition of geometrical vectors. This law can be used
to define the sum of two bound vectors with the same initial point. It also shows that

−→u +−→v = −→v +−→u ,

which is the commutative law for addition of geometrical vectors. If −→w =
−−→
CE, then

−→u + (−→v +−→w ) = (−→u +−→v ) +−→w
since both sides are equal to

−→
AE. This is the associative law for addition of geometrical

vectors.
If we let −~v = (−1)~v, we have ~u + (−~u) = ~0. Note that −−−→AB =

−−→
BA for free vectors. If

we also define
~v − ~u = ~v + (−~u),

we have (~v − ~u) + ~u = ~v. It follows that
−−→
AB =

−→
AO +

−−→
OB =

−−→
OB −−→OA

for any point O. This only makes sense for free vectors.
Now suppose that we are given a coordinate system with origin O and unit points I, J,K.

We let
[P ] = (x(P ), y(P ), z(P ))

and call it the coordinate vector of P ; this type of vector is called a numerical vector
as opposed to a geometrical vector. In the next section we will give a more general defintion
of the word vector so as to include numerical vectors.

The geometrical vector
−−→
OP is called the position vector of P . Let~i =

−→
OI, ~j =

−→
OJ , ~k =−−→

OK be the position vectors of the unit points I, J,K. By the definition of the coordinates
of P , we have

−−→
OP = x~i + y~j + z~k ⇐⇒ [P ] = (x, y, z).

In particular, if −→v is a geometrical vector and O + −→v = A(a, b, c), so that −→v =
−→
OA, we

have
−→v = a~i + b~j + c~k.
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The numerical vector (a, b, c) is called the coordinate vector of −→v and is denoted by [−→v ].
The numbers a, b, c are also called coordinates or components or direction numbers
of −→v . Notice that

[P ] = [
−−→
OP ]

so that a point and a geometrical vector can have the same coordinate vector. If we were
to, as is too often the case, identify points and vectors with their coordinate vectors then
there would be a great risk of confusing these two distinct geometric objects. Also points
and geometrical vectors may have different coordinates in different cooordinate systems and
we may want to introduce a second coordinate system to simplify a problem.

Theorem 2.1. If −→v = a~i + b~j + c~k then

P (x, y, z) +−→v = Q(x + a, y + b, z + c).

Proof: We have Q = P +−→v and P = O +
−−→
OP so that

Q = (O +
−−→
OP ) +−→v = O + (

−−→
OP +−→v ).

Now
−−→
OP +−→v = (x~i + y~j + z~k) + a~i + b~j + c~k

= (x~i + a~i) + (y~j + b~j) + (z~k + c~k)

= (x + a)~i + (y + b)~j + (z + c)~k

so that [Q] = (x + a, y + b, z + c).
Corollary 2.1. If A(a1, b1, c1) +−→v = B(a2, b2, c2) then

−→v =
−−→
AB = (a2 − a1)~i + (b2 − b1)~j + (c2 − c1)~k.

For example, if A(1, 2, 3) +−→v = B(−1, 3,−1), we have

~v =
−−→
AB = 2~i +~j − 4~k

P (x, y, z) +−→v = P (x + 2, y + 1, z − 4).

If we define the sum of the two numerical vectors (x, y, z) and (a, b, c) to be the numerical
vector

(x, y, z) + (a, b, c) = (x + a, y + b, z + c),

we have
[P +−→v ] = [P ] + [−→v ]

[−→u +−→v ] = [−→u ] + [−→v ].

If we define the product of the number t and the numerical vector (a, b, c) to be the numerical
vector

t(a, b, c) = (ta, tb, tc),

we have
[t−→v ] = t[−→v ]

since [t−→v ] = (ta, tb, tc).
As an application, let us find a formula for the midpoint Q of the line segment joining

the points A(a1, b1, c1) and B(a2, b2, c2). The coordinate vector of
−−→
AB is

(a2 − a1, b2 − b1, c2 − c1).
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Then, since Q = A + (1/2)
−−→
AB, we get

[Q] = [A] + (1/2)[
−−→
AB]

= (a1, b1, c1) + (1/2)(a2 − a1, b2 − b1, c2 − c1)

= (
a1 + a2

2
,
b1 + b2

2
,
c1 + c2

2
).

This also shows that
−−→
OQ = 1

2 (
−→
OA+

−−→
OB). Similarly, one can get the coordinates of the point

which divides a given line segment in any given ratio (see the exercises).

2.1. Exercises. 1. If −→v =
−−→
AB, with [A] = (2, 4, 6), [B] = (8, 10, 12), and [P ] = (−2, 3, 5),

find

[P +−→v ], [P + (1/2)−→v ], [P + (2/3)−→v ], [P + t−→v ].

Graph these points.

2. If [−→u ] = (1, 1, 3)], [−→v ] = (3, 4, 2) compute

[2−→u + 3~v], [(−1)−→u + 2~v], [a−→u + b−→v ].

3. If A(1, 2, 4), B(2,−3, 7), C(6,−3, 5) are given points, find the coordinates of the mid-
points D,E of AB and AC respectively. Using this, show that

−−→
DE is parallel to

−−→
BC. Show

also that

D + (1/3)
−−→
DC = B + (2/3)

−−→
BE.

4. Let A(x1, y1, z1), B(x2, y2, z2) be distinct points on the line L passing through A and B.
If P is any point on L with

−→
AP = r

−−→
AB, show that

((1− r)x1 + rx2, (1− r)y1 + ry2, (1− r)z1 + rz2))

is the coordinate vector of P .

2.2. Planar Vectors. Let Π be a plane. A vector −→v is said to be parallel to Π if P +−→v is
a point of Π for every point P of Π; in other words, if −→v sends every point of Π to another
point of Π. Then −→v is parallel to Π iff it is parallel to every plane Π′ which is parallel to
Π. If −→u ,−→v are parallel to Π and a, b are scalars then a−→u + b−→v is again parallel to Π.

If (O, I, J) is a frame for Π and~i =
−→
OI, ~j =

−→
OJ , every vector −→v can be uniquely written

in the form
−→v = a~i + b~j.

If P is any point of Π and [P ] = (x(P ), y(P )) = (x, y) is the coordinate vector of P , we have

[P +−→v ] = (x + a, y + b).

If we define the coordinate vector of −→v to be

[−→v ] = (a, b)

and define (a1, b1) + (a2, b2) = (a1 + b1, a2 + b2), c(a, b) = (ca, cb), we have

[−→u +−→v ] = [−→u ] + [−→v ], [c−→v ] = c[−→v ].
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2.3. Exercises. 1. If −→v =
−−→
AB, with [A] = (7, 4), [B] = (−5, 10), and [P ] = (2,−3), find

[P +−→v ], [P − (1/2)−→v ], [P + (2/3)−→v ], [P + t−→v ].

Graph these points.

2. If [−→u ] = (4,−3)], [−→v ] = (−5, 4) compute

[2−→u + 3−→v ], [(−1)−→u + 2−→v ], [a−→u + b−→v ].

3. If A(x1, y1), B(x2, y2) are given points, find the coordinates of the vector
−−→
AB and the

midpoint of the line segment AB. Prove your assertions.

4. If A(6, 4), B(−3, 7), C(3, 5) are given points, find the coordinates of the mid-points D, E

of AB and AC respectively. Using this, show that ~DE is parallel to
−−→
BC. Show also that

D + (1/3)
−−→
DC = B + (2/3)

−−→
BE.

5. Let A(x1, y1), B(x2, y2) be distinct points on the line L passing through A and B. If P

is any point on L with
−→
AP = r

−−→
AB, show that

((1− r)x1 + rx2, (1− r)y1 + ry2)

is the coordinate vector of P .

2.4. Vector Spaces. Let V be the set of geometrical vectors. If −→u ,−→v are in V we can
add them to get another vector −→u +−→v of V and, if c is a number (also called a scalar), we
can multiply c and −→u to get a vector c−→u of V . These operations obey the usual laws of
arithmetic:

(1) (−→u +−→v ) +−→w = −→u + (−→v +−→w );
(2) There is a vector

−→
0 in V such that

−→
0 +−→u = −→u +

−→
0 = −→u for any ~u in V ;

(3) For any −→u in V , there is a vector −→v with −→u +−→v = −→v + ~tu =
−→
0 ;

(4) −→u +−→v = −→v +−→u ;
(5) If a, b are scalars, a(b−→u ) = (ab)−→u ;
(6) 1 · −→u = −→u ;
(7) If a, b are scalars, then (a + b)−→u = a−→u + b−→u and a(−→u +−→v ) = a−→u + a−→u .

We have proved all these properties except for the very last one. This one can be obtained
by taking coordinate vectors, using the fact that −→u = −→v iff [−→u ] = [−→v ]. If [−→v ] = (x1, y,z1),
[−→v ] = (x2, y2, z2), we have

[a(−→u +−→v )] = a[−→u +−→v ]
= a([−→u ] + [−→v ])
= a((x1, y1, z1) + ((x2, y2, z2))
= a((x1 + y1, x2 + y2, z1 + z2)
= (a(x1 + x2), a(y1 + y2), a(z1 + z2))
= (ax1 + ax2, ay1 + ay2, az1 + az2)
= (ax1, ay1, az1) + (ax2, ay2, az2)
= a(x1, y1, z1) + a(x2, y2, z2)
= [a−→u ] + [a−→v ]
= [a−→u + a−→v ]
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which shows that a(−→u +−→v ) = a−→u + a−→v . Note that we also, in the process, obtain

a((x1, y1, z1) + (x2, y2, z2)) = a(x1, y1, z1) + a(x2, y2, z2).

More generally, any set V , having operations of addition and multiplication by scalars
satisfying the above seven properties, is called a vector space; the elements of V are called
vectors. According to this definition, a vector is simply an element of some vector space.
The set of scalars, together with the usual laws of addition and multiplication, satisfy these
properties. So they form vector space according to this definition.

An important example of a vector space is the set Rn consisting of n-tuples of scalars
(x1, x2, . . . , xn) with addition and multiplication by scalars defined by

(x1, x2, . . . , xn) + (y1, y2, . . . , yn) = (x1 + y1, x2 + y2, . . . , xn + yn),

c(x1, x2, . . . , xn) = (cx1, cx2, . . . , cxn).
The proof of this is left as an exercise for the reader.

Other examples of vector spaces are the set of vectors parallel to a given plane or the
set of vectors parallel to a given line. These two vectors spaces are subspaces of the vector
space of all geometric vectors. By definition, a subspace of a vector space V is a non-empty
subset S of V such that, for every −→u ,−→v in S and scalars a, b the vector a−→u + b−→v is again
in S.

The first property of vector spaces is called the associative law for addition, the
fourth is called the commutative law for addition, the fifth is called the associative
law for scalar multiplication and the last property is called the distributive law. The
distinguished vector ~0 whose existence is asserted in the second item above is unique. Indeed,
if
−→
0′ satisfies

−→
0 ′ + −→u = −→u +

−→
0′ for any −→u in V , we have

−→
0 =

−→
0 +

−→
0′ =

−→
0′ . This vector

is called the zero vector of V . If V = Rn, the zero vector is (0, 0, . . . 0). If V is the vector
space of geometric vectors, the zero vector is the translation which moves nothing.

Given a vector −→u there is a vector −→v with
−→u +−→v = −→v +−→u =

−→
0 .

This vector is unique since
−→u +

−→
v′ =

−→
v′ +−→u = 0

implies that
−→v = −→v + (−→u +

−→
v′ ) = (−→v +−→u ) +

−→
v′ =

−→
v′ .

This vector is called the additive inverse of ~u and is denoted by −−→u . Using this, we can
show that the only vector −→v satisfying −→v +−→v = −→v is the zero vector. Indeed, adding −−→v
to both sides and using the associative law, we get −→v =

−→
0 .If 0 is the zero scalar, we have

0 · −→v = (0 + 0)−→v = 0 · −→v + 0 · −→v ,

and so 0 · −→v =
−→
0 for any vector −→v . If V = Rn, we have

−(x1, x2, . . . , xn) = (−x1,−x2, . . . ,−xn);

if V is the vector space of geometrical vectors, and −→v =
−−→
AB, then −−→v =

−−→
BA. For any

vector space we have
(−a)−→v = −(a−→v )

since
a−→v + (−a)−→v = (a + (−a))−→v = 0 · −→v = 0.

If we define −→u −−→v to be −→u + (−−→v ) = −→u + (−1)−→v ,
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then −→u −−→v is the unique vector −→w such that −→w +−→v = −→u .
If −→u 1,

−→u 2, . . . ,
−→u n are vectors in a vector space V and a1, a2, . . . , an are scalars, then

the vector
−→v = a1

−→u 1 + a2
−→u 2 + · · ·+ an

−→u n

is called a linear combination of the vectors −→u 1,
−→u 2, . . . ,

−→u n. If
−→w = b1

−→u 1 + b2
−→u 2 + · · ·+ bn

−→u n

is another linear combination of these vectors, then

c−→v + d−→w = (ca1 + db1)−→u 1 + (ca2 + db2)−→u 2 + · · ·+ (can + dbn)−→u n.

and so c~v + d~w is again a linear combination of the given vectors.
A sequence of vectors −→u 1,

−→u 2, . . . ,
−→u n is said to be a basis for the vector space V if

every vector −→v of V can be uniquely written in the form
−→v = x1

−→u 1 + x2
−→u 2 + · · ·+ xn

−→u n.

The numerical vector [−→v ] = (x1, x2, ..., xn) is called the coordinate vector of ~u with
respect to the given basis. We will show later that the number n is uniquely determined
by V ; it is called the dimension of V . For example, the position vectors ~i,~j,~k of the
unit points of a coordinate frame with respect to the origin of that frame are a basis for
the vector space of geometrical vectors. This vector space is 3-dimensional. The vector
space of geometrical vectors parallel to a given plane is 2-dimensional and the vector space
of geometrical vectors parallel to a given line is one-dimensional. The vector space Rn is
n−dimensional with basis

(1, 0, . . . , 0), (0, 1, . . . , 0), (0, 0, 1, . . . , 0), . . . (0, 0, . . . , 1).

This basis is called the usual basis of Rn.

2.5. Exercises. 1. Show that Rn with the operations of vector addition and multiplication
by scalars defined above is a vector space.

2. Show that that the subset of R3 consisting of those triples (x1, x2, x3) with x1 +2x2 = x3

is a subspace of R3.

3. Show that the subset of R2 consisting of those vectors x, y with x + y = 1 is not a
subspace of R2.

2.6. Using vectors to solve geometrical problems. Let’s give some examples of the
use of vectors to solve geometrical problems.

Problem 2.1. Show that the diagonals of a parallelogram bisect each other.

Solution. Let A,B, C, D be a parallelogram with AB parallel to CD and AC parallel
to BD. Let −→u =

−−→
AB, −→v =

−→
AC. Then

−−→
AD = −→u +−→v by the parallelogram law for addition

and
−−→
BC = −→v −−→u since

B + (−→v −−→u ) = (A +−→u ) + (−→v −−→u ) = A +−→v = C.

If P is the midpoint of AD and Q the midpoint of BC, we have

P = A +
1
2
(−→u +−→v ), Q = A + (−→u +

1
2
(−→v −−→u )).
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But

−→u +
1
2
(−→v −−→u ) = −→u +

1
2
−→v − 1

2
−→u

=
1
2
(−→u +−→v ),

which shows that P = Q.

Remark. The above point P is a center of symmetry of the parallelogram: Any line
L through P (in the plane of the parallelogram) meets the sides of the parallelogram in
two points R, S with

−→
PR = −−→PS. The easiest way to see this is to choose a coordinate

system with center P and axes parallel to the sides of the parallelogram. The equations of
the sides are therefore x = ±a, y = ±b. The point R(x, y) lies on one of the sides iff either
|x| = |a|, |y| ≤ |b| or |y| = |b|, |x| ≤ |a|, in which case the point T (−x,−y) also lies on on
of the sides. Since P , S, T lie on a line we must have S = T as L meets the sides of the
parallelogram at precisely two points. But then

−→
PS = −−→PR, which is what we wanted to

show.
Problem 2.2. Show that the medians of a triangle meet in a point.

Solution. Let ABC be a triangle. Its medians are the lines joining the vertices to the
midpoints of the opposite sides. Let ~u =

−−→
AB and ~v = ~AC. If D is the midpoint of BC and

P is any point on AD, we have
−→
AP = t

−−→
AD = t(

−−→
AB +

−−→
BD)

= t(
−−→
AB +

1
2
−−→
BC)

= t(
−−→
AB +

1
2
(
−−→
BA +

−→
AC)

= t(
−−→
AB +

1
2
(−−−→AB +

−→
AC)

= t(
−−→
AB − 1

2
−−→
AB +

1
2
−→
AC

= t(
1
2
−−→
AB +

1
2
−→
AC)

=
t

2
−→u +

t

2
−→v .

If E is the midpoint of AB and Q is any point on CE, we have
−→
AQ =

−→
AC +

−−→
CQ

=
−→
AC + s

−−→
CE

=
−→
AC + s(

−→
CA +

−→
AE)

=
−→
AC + s(−−→AC +

1
2
−−→
AB)

= (1− s)
−→
AC +

s

2
−−→
AB

= (1− s)−→u +
s

2
−→v .

We have P = Q iff
t

2
−→u +

t

2
−→v = (1− s)−→u +

s

2
−→v
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for suitable scalars s, t. Since −→u ,−→v are the position vectors of the unit points of the frame
(A,B, C), we see that P = Q iff t/2 = 1 − s and t/2 = s/2. But these equations hold iff
s = t = 2/3. Thus the medians AD, CE meet at a point which is two thirds of the way
from the vertex to the midpoint of the opposite side. Since this result applies to any pair of
medians, we see that the medians meet in a point which is two thirds of the way from the
vertex to the midpoint of the opposite side. In particular, the medians trisect each other.

Remark. The point P of intersection of the medians is called the centroid of the triangle.
Since

−−→
OB =

−→
OA + ~u and

−−→
OC =

−→
OA + ~v,we have

−→
OA +

−−→
OB +

−−→
OC = 3

−→
OA +−→u +−→v

for any point O and hence that
−−→
OP =

1
3
(
−→
OA +

−−→
OB +

−−→
OC)

since
−→
OA + 1

3 (−→u +−→v ) =
−→
OA +

−→
AP =

−−→
OP .

2.7. Exercises. 1. If P is the center of the parallelogram ABCD and O is any point, show
that −−→

OP =
1
4
(
−→
OA +

−−→
OB +

−−→
OC +

−−→
OD).

2. Show that A(1, 3, 6), B(2, 5, 5), C(4, 2, 8), D(5, 4, 7) are the vertices of a parallelogam and
find the coordinates of its center.

3. If A(x1, y1, z2), B(x2, y2, z2), C(x3, y3, z2) are not collinear, show that

D(
x1 + x2 + x3

3
,
y1 + y2 + y3

3
)

is the the centroid of the triangle ABC. Use this to find the centroid of the triangle with
vertices A(1,−2, 4), B(−2, 3,−3), C(5, 2, 1).

4. What is the formula for the coordinates of the centroid of a triangle with respect to a
planar frame? Using this formula, find the centroid of the triangle with vertices A(3, 4),
(6,−2), C(2, 5).

5. Show that the lines joining each vertex of a tetrahedron to the centroid of the opposite
face meet in a point P . Find the coordinates of P in terms of the coordinates of the vertices
of the tetrahedron. In what ratio do these lines divide each other?

3. Equations of Lines and Planes

We first derive the equations of lines in space. Let L be a line and let A, B be distinct
points on L. If −→v =

−−→
AB, a point P lies on L iff

P = A + t−→v
for some scalar t, in which case t is the coordinate of P with respect to the ruler on L with
origin A and unit point B. This equation is called a affine equation for L. If O is a fixed
point and P is any point, then P is on L iff

−−→
OP =

−→
OA + t

−−→
AB

for some scalar t. This equation is called a vector equation for L. Both affine and vector
equations for are independent of any coordinate system. The vector ~v can be taken to be
any non-zero geometric vector parallel to L.
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Now suppose that we have a coordinate system with origin O. If A and B have coordinate
vectors (a1, b1, c1) and (a2, b2, c2) then, taking coordinate vectors, the vector and affine
equations for L each transform into the following equation of numerical vectors

(x, y, z) = (a1, b1, c1) + t(α, β, γ),

where α = a2−a1, β = b2−b1, γ = c2−c1, from which we get the following set of equations:

x = a1 + tα

y = b1 + tβ

z = c1 + tγ.

These equations are called parametric equations for the line L. If we change the points
A,B on L, these equations will change and so a line may have many different parametric
equations for it. As we saw above, the parameter t is the coordinate of the point P (x, y, z)
on L with respect to the ruler with origin A(a1, b1, c1) and unit point B(a1+α, a2+β, a3+γ)
The numerical vector (α, β, γ) is called a direction vector for the line L; it is determined
by L up to multiplication by a non-zero constant. A direction vector for a line can be
found by taking the coordinate vector of any non-zero vector parallel to L. Two lines
have proportional direction vectors iff they are parallel. Therefore, if two lines don’t have
proportional direction vectors, they either meet or are skew lines (non-coplanar lines).

If α, β, γ are non-zero, the above equations can be written in the more symmetric
form

x− a1

α
=

y − b1

β
=

z − c1

γ
.

The original equations can be recovered by setting the common value equal to t and solving
for x, y, z. If α = 0 while β, γ are non-zero, the equations become

x = a1,
y − b1

β
=

z − c1

γ
,

and so is the equation of a line in the plane x = a1. If α = β = 0, the equation of the line
becomes x = a1, y = b1 (z arbitrary), which is the equation of the line through (a1, b1, 0)
which is parallel to the z-axis.

Problem 3.1. Find parametric and symmetric equations for the line through the points
A(−1, 2, 3), B(1, 3, 2). Determine whether or not C(3, 4, 1) is on the line.

If L is the line through the points A(−1, 2, 3), B(1, 3, 2) then L has direction vector
[
−−→
AB] = (2, 1.− 1) and so has parametric equations

x = −1 + 2t

y = 2 + t

z = 3− t.

The symmetric form of these equations are

x + 1
2

=
y − 2

1
=

z − 3
−1

.

The poinr C(3, 4, 1) is not on the line since
−→
AC = (4, 2, 1) which is not a multiple of (2, 1,−1).



15

Remark. If we choose t = 4 we get a point C(7, 6,−1) on L. If we use B, C to get equations
for L we get

x = 1 + 6t

y = 3 + 3t

z = 2− 3t

which, in symmetric form, are
x− 1

6
=

y − 3
3

=
z − 2
−3

.

Notice that the direction numbers found here are proportional to the direction numbers
found above, i.e., (6, 3,−3) = 3(2, 1,−1).
Problem 3.2. Find (if any) the points of intersection of two lines

x = −1 + 2t
y = 2 + t
z = 3− t,

and
x = 2 + t
y = 1− 2t
z = 3 + t.

Solution. First note that, since the direction vectors (2, 1,−1) and (1,−2, 1) are not
proportional, these two lines are not parallel; so they either don’t meet or they meet in
a single point. If P (x, y, z) were a point of intersection of these two lines, we must have
(x, y, z) = (−1 + t, 2 + t, 3− t) for some number t since P lies on the first line. But, since P
also lies on the second line, we must have (x, y, z) = (2 + s, 1− 2s, 3 + s) for some number
s (possibly different from the number t found above because s, t are the coordintes of P
with respect to two different rulers). We therefore have −1 + 2t = 2 + s, 2 + t = 1 − 2s,
3− t = 3 + s which can be written

−s + 2t = 3
2s + t = −1
s + t = 0.

If we add the first equation to the third and add 2 times the first equation to the second,
we get

−s + 2t = 3
5t = 5
3t = 3.

This system has the same solutions as the original system since the above process can be
reversed to give the original system. Indeed, subtracting the first equation from the third
and adding −2 times the first to the second gives back the orginal system. If we now multiply
the second equation by 1/5 and the third equation by 1/3, we get

−s + 2t = 3
t = 1
t = 1.

Subtracting the second equation from the third, we get

−s + 2t = 3
t = 1
0 = 0.
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Since t = 1, s = 1 are the only values of s, t which satisfy all three of these equations,
the two lines meet in the unique point P (1, 3, 2). The equation 0 = 0 is called the zero
equation. Since it imposes no condition on the variables, it can safely be deleted from any
system.

Problem 3.3. Repeat the previous problem with the second line replaced by the line

x = 2 + t

y = 1− 2t

z = 2 + t.

Solution. Again, the lines are not parallel since the direction vectors (2, 1,−1), (1,−2, 1)
of the lines are not proportional. A point P (x, y, z) lies on both lines iff there are scalars
s, t with −1 + 2t = 2 + s, 2 + t = 1− 2s, 3− t = 2 + s and we get the system

−s + 2t = 3
2s + t = −1
s + t = 1.

If we add the first equation to the third and add twice the first to the second, we get

−s + 2t = 3
5t = 5
3t = 4.

Subtracting 3/5 times the second equation from the third, we get

−s + 2t = 3
5t = 5
0 = 1.

Since the equation 0 = 1 has no solutions, the system itself has no solutions and hence the
two lines do not meet. The two lines are skew since they are not parallel.

The procedure used in the last two problems for solving linear systems is called Gauss-
Jordan elimination. The main step in this procedure is to pick an equation, called a pivot
equation, and select a variable that appears in this equation (has a non-zero coefficient);
this variable is called a pivot variable and we make the term containing this variable
the first term in the equation. After possibly interchanging two equations, which does not
change the solution set, we can assume that the pivot equation is the first equation. We
then eliminate this pivot variable from all the other equations by adding a multiple of the
working equation to each of the other equations. (Note that subtracting c times an equation
to another is the same as adding −c times that equation.) Since the original system can be
recovered by reversing this procedure, we obtain an equivalent system, one with the same
solution set as the original system. Multiplying an equation by a non-zero constant also
yields an equivalent system. We then repeat the above procedure on the system formed by
the equations other than the first. When this process stops we will have a number of pivot
equations with the pivot variable appearing in no succeeding equation and we will possibly
have a number of equations of the form 0 = 0 which can be deleted or we will have an
equation 0 = a with a 6= 0, in which case the system is inconsistent, i.e., has no solutions.
Such a system is said to be in echelon form. If we now eliminate the pivot variables from
the other equations, starting with the last pivot equation to minimize the calculation, and
then make the coefficient of the pivots 1 by multiplying each pivot equation by a suitable
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constant, we obtain a system which is in reduced echelon form. In this case we will have
solved for the pivot variables in terms of the non-pivot variables. If the system is consistent,
we can get all solutions by arbitrarily assigning values to the non-pivot variables.

Let us now find equations for planes. Let Π be a plane and let A,B,C be non-collinear
points on Π. Let −→u =

−−→
AB, −→v =

−→
AC. Then a point P is on Π iff

P = A + s−→u + t−→v
with s, t scalars, in which case, (s, t) is the coordinate vector of P with respect to the frame
(A,B, C). This equation is called an affine equation for Π. If O is a fixed point then P is
a point of Π iff −−→

OP =
−→
OA + s−→u + t−→v

with s, t scalars. This is a vector equation for Π. Both vector and affine equations for
Π are independent of any coordinate system. The vectors −→u , −→v could be chosen to be
any two non-zero vectors parallel to Π which are not scalar multiples of each other since A,
B = A +−→u , C = A +−→u would then be three non-collinear points of Π.

Now suppose we are given a coordinate system with origin O and suppose that the
coordinate vectors of A, B,C are respectively

(a1, b1, c1), (a2, b2, c2), (a3, b3, c3)

It is easy to test for the non-collinearity of A,B, C; in fact, they are non-collinear iff [
−−→
AB]

is not a scalar multiple of [
−→
AC]. We have

[
−−→
AB] = (α1, β1, γ1) = (a2 − a1, b2 − b1, c2 − c1),

[
−→
AC] = (α2, β2, γ2) = (a3 − a1, b3 − b1, c3 − c1).

Taking coordinate vectors the affine and vector equations for Π each transform to

(x, y, z) = (a1, b1, c1) + s(α1, β1, γ1) + t(α2, β2, γ2),

from which we obtain the equations

x = a1 + sα1 + tα2

y = b1 + sβ1 + tβ2

z = c1 + sγ1 + tγ2.

These are parametric equations for Π with parameters s, t which are the coordinates of a
point P of Π with respect to the plane coordinate system with origin A and unit points B,
C. The numerical vectors (α1, β1, γ1), (α2, β2, γ2) are called direction vectors for Π. A
direction vector for Π can be found by taking the coordinate vector of the geometric vector
determined by any pair of distinct points on a line parallel to Π.
Problem 3.4. Show that the three points

A(1, 0,−2), B(3,−1, 1), C(4, 1,−4).

are non-collinear and find parametric equations for the plane passing through them.

Solution. Since the numerical vectors [
−−→
AB] = (2,−1, 3), [

−→
AC] = (3, 1,−2) are non-

proportional, the points A,B,C do not lie on a line. Also, since these vectors are direction
vectors for the plane passing through A, B,C, we get

x = 1 + 2s + 3t

y = −s + t

z = −2 + 3s− 2t,
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as parametric equations for this plane.

If, in the above problem, we solve for s, t using the first two equations we get

s = (x− 3y − 1)/5, t = (x + 2y − 1)/5.

Substituting this in the third equation, we get the equation

x− 13y − 5z = 11

whose solutions are precisely the coordinates of the points P which lie on Π. Indeed, if
(x, y, z) is a solution of this equation and we set s = (x− 3y − 1)/5, t = (x + 2y − 1)/5 we
get z = −2 + 3s− 2t. The equation x− 13y − 5z = 0 is called a normal equation for Π.
We will show later that every plane has a normal equation. For now, we content ourselves
to prove the following result:
Theorem 3.1. If a, b, c, d are scalars with a, b, c not all zero, the points P (x, y, z) whose
coordinates satisfy the equation ax + by + cz = d form a plane.

Proof. We first suppose that a 6= 0. Then

x =
d

a
+
−b

a
y +

−c

a
z.

We get all solutions of ax + by + cz = d by setting y = s, z = t arbitrarily and solving for
x. We thus get parametric equations

x = d/a− (b/a)s− (c/a)t
y = s

z = t,

which are parametric equations for the plane Π passing through the points

A(d/a, 0, 0), B((d− b)/a, 1, 0), C((d− c)/a, 0, 1).

If a = 0 and b 6= 0, we get the solutions of y = d/b−(c/b)z by setting x = s, z = t arbitrarily.
We thus get the parametric equations

x = s

y = d/b− (c/b)t
z = t,

which are parametric equations for the plane Π passing through the points

A(0, d/b, 0), B(1, d/b, 0), C(0, (d− c)/b, 1).

If a = b = 0, then the solutions of z = −(d/c) can be described in parametric form by

x = s

y = t

z = d/c,

which are parametric equations for the plane Π passing through the points A(0, 0, d/c),
B(1, 0, d/c), C(0, 1, d/c). Q.E.D.

Remark. We will show later that the planes ax + by + cz = d and a′x + b′y + c′z = d′ are
equal if an only if there is a constant t such that

(a′, b′, c′, d′) = t(a, b, c, d).
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Problem 3.5. Find the points of intersection of the line

x = 1 + 6t

y = 3 + 3t

z = 2− 3t

and the plane

x = 1 + 2s + 3t

y = −s + t

z = −2 + 3s− 2t.

Solution 1. A point P (x, y, z) will lie on both planes if and only if we can find scalars
r, s, t so that

x = 1 + 6r = 1 + 2s + 3t
y = 3 + 3r = −s + t
z = 2− 3r = −2 + 3s− 2t.

This will happen precisely when r, s, t satisfy the following system of linear equations:

6r − 2s− 3t = 0
3r + s− t = −3

−3r − 3s + 2t = −4.

Since a line can either (i) meet a plane in a single point, (ii) lie in the plane or (iii) not meet
the plane, this system of equations could have (i) one solution, (ii) an infinity of solutions
or (iii) no solution.

To see which it is we use Gauss-Jordan elimination on this system. Choose the second
equation as our pivot equation and r as the pivot variable. Interchanging the first two
equations we get the system

3r + s− t = −3
6r − 2s− 3t = 0

−3r − 3s + 2t = −4.

Then add −2 times the first equation to the second equation and add the first equation to
the third equation to get

3r + s− t = −3
−4s− t = 6
−2s + t = −7.

We now repeat the procedure by choosing a new pivot equation, the third, and a new pivot
variable, s and interchange the second and third equations to get

3r + s− t = −3
−2s + t = −7
−4s− t = 6.
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We then subtract −2 times the second equation from the third to elminate s. The resulting
system is

3r + s− t = −3
−2s + t = −7

−3t = 20.

The last equation gives t = −20/3 and substituting this in the second equation gives s = 1/6.
Finally, substituting s = 1/6, t = −20/3 in the first equation, we get

s = 1/6, r = −59/18, t = −20/3.

Hence the given line and plane meet in the point

P (1 + 6r, 3 + 3r, 2− 3r) = (−56/3,−41/6, 71/6).

As a check, note that this point is the same as

P (1 + 2s + 3t,−s + t,−2 + 3s− 2t) = (−56/3,−41/6, 71/6).

Solution 2. We could also have solved this problem by using a normal equation of the
plane, which in this case is x − 13y − 5z = 11, and substituting x = 1 + 6r, y = 3 + 3r,
z = 2− 3r in this equation to get 1+6r− 39− 39r− 10+15r = 11 from which r = −59/18.
Solution 3. There is a third way of solving this problem by using the symmetric form of

the given line:
x− 1

6
=

y − 3
3

=
z − 2
−3

.

This equation can be written as two equations (x−1)/6 = (y−3)/3, (y−1)/3 = −(z−2)/3
which, on simplifying, yield the two equations

x− 2y = −5
y + z = 3.

Since each of these equations are equations of a plane, this yields two planes which intersect
in the given line. The intersection of the given line and plane is therefore the intersection
of the given plane with the above two planes. In other words, the points P (x, y, z) in the
intersection are given by the solutions of the system

x− 2y = −5,

y + z = 3,

x− 13y − 5z = 11.

We leave it as an exercise for the reader to show, using Gauss-Jordan elimination, that this
system has the unique solution x = −56/3, y = −41/6, z = 71/6.

Problem 3.6. Find the intersection of the two planes

x = 1 + 2s + 3t
y = −s + t
z = −2 + 3s− 2t,

x = s + t
y = s− t
z = 1 + s.

Solution 1. A point P (x, y, z) lies on the first plane if an only if there are numbers
s1, t1 such that x = 1 + 2s1 + 2t1, y = −s1 + t1, z = −2 + 3s1 − 2t1. This point lies on
the second plane if an only if there are numbers s2, t2 such that x = s2 + t2, y = s2 − t2,
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z = 1 + s2. Tho find the points intersection, we have to find the solutions of the system of
equations

1 + 2s1 + 3t1 = s2 + t2

−s1 + t1 = s2 − t2

−2 + 3s1 − 2t1 = 1 + s2.

This system simplifies to

2s1 + 3t1 − s2 − t2 = −1
−s1 + t1 − s2 + t2 = 0

3s1 − 2t1 − s2 = 3.

We choose the second equation as our first pivot equation and s1 as the pivot variable in
this equation. Interchanging the first two equations, we get

−s1 + t1 − s2 + t2 = 0
2s1 + 3t1 − s2 − t2 = −1

3s1 − 2t1 − s2 = 3.

To eliminate s1 from the second and third equations, add twice the first equation to the
second and three times the first equation to the third to get

−s1 + t1 − s2 + t2 = 0
5t1 − 3s2 + t2 = −1
t1 − 4s2 + 3t2 = 3.

We now choose the third equation as our next pivot equation and the variable t1 as the
pivot variable in this equation. Interchanging the second and third equations, we get

−s1 + t1 − s2 + t2 = 0
t1 − 4s2 + 3t2 = 3
5t1 − 3s2 + t2 = −1.

To eliminate t1 from the third equations, we add −5 times the second equation to the third
equation to get

−s1 + 3s2 − 2t2 = −3
t1 − 4s2 + 3t2 = 3

17s2 − 14t2 = −16.

We now choose the third equation as our last pivot equation and s2 as the pivot variable.
If we add −3/17 times the third equation to the first and 4/17 times the third equation to
the first we get the system

−s1 + (8/17)t2 = −54/17
t1 − (5/17)t2 = 55/17

17s2 − 14t2 = −16.

Solving for the pivot variables, we get

s2 = (14/17)t2 − 16/17
t1 = (5/17)t2 + 55/17
s1 = (8/17)t2 + 54/17.
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Since the solutions of this system are obtained by giving t2 any value and solving for s1, s2, t1,
we see that the points of intersection of the two planes are

P (s2 + t2, s2 − t2, 1 + s2) =
P ((31/17)t2 − 16/17,−(3/17)t2 − 16/17, (14/17)t2 + 1/17),

with t2 taking arbitrary values. This shows that the two planes intersect in the line

x = −16/17 + (31/17)t
y = −16/17− (3/17)t
z = 1/17 + (14/17)t.

Solution 2. Another way to solve this problem is to use normal equations for these planes.

The first plane has the normal equation x − 13y − 5z = 11 and the second has normal
equation x + y − 2z = −2. The intersection of these two planes is given by the solution set
of the following system:

x− 13y − 5z = 11
x + y − 2z = −2.

Using Gauss-Jordan elimination, one finds that the solutions of this system are

x = (31/14)z − 1/14, y = −(3/14)z − 13/14

with z arbitrary and hence that the line of intersection is

x = −15/14 + (31/14)t
y = −13/14− (3/14)t
z = t.

This parametric representation is different from the one obtained above but they both
describe the same line. As a check, note that the direction numbers are proportional (so the
lines they describe are parallel) and that, setting t = 1/17 in the second parametrization,
we get x = y = −16/17, z = 1/17 which is the point corresponding corresponding to t = 0
in the first parametrization; so the parallel lines described by the two parametrizations have
a point in common and hence are equal. There is a third way to solve this problem but we
leave this to the reader.

3.1. Exercises. 1. Determine how the following lines intersect each other. In cases they
don’t meet, determine if the lines are skew or parallel.

x = 1 + t
y = 2− t
z = 3 + 2t,

x = −6t
y = 6t
z = −12t,

x = 3t
y = 3 + t
z = 1 + 3t.

2. Find parametric equations for the line of intersection of the two planes

x = 1 + s + t
y = 2− s− 2t
z = s− t,

x = 2 + 3s− t
y = 1 + s
z = 2 + s + t.

3. Find the equation of the plane passing through (1, 2, 3) containing the line of intersection
of the two planes x + y + z = 1, x− 2y − z = 2.

4. Show that any plane containing the line of intersection of the two planes

10x− 21y + 30z = 12, 42x− 121y + 30z = 40
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is of the form a(10x−21y +30z−12)+ b(42x−121y +30z−40) = 0 for suitable scalars a, b.
Use this to find the equation of the plane containing the line of intersection of the given two
planes and passing through the point (1, 2, 1).

3.2. Equations of Lines in a Plane. Let (O, I, J) be a frame for a plane Π and let

~i =
−→
OI, ~j =

−→
OJ.

If ~v is a geometric vector parallel to Π, we have

P (x, y) + ~v = (x + a, y + b)

for a unique pair of scalars (a, b). This pair is the coordinate vector of ~v in the given frame
and is denoted by [~v]. The point P has coordinate vector [P ] = (x, y) with respect to this
frame iff −−→

OP = x~i + y~j.

If L is a line in Π and A(a1, b1), B(a2, b2) are distinct points on L, a vector equation for
L is −−→

OP =
−→
OA + t

−−→
AB.

Since [
−−→
AB] = (a2 − a1, b2 − b1), the equation of L in terms of coordinate vectors is

(x, y) = (a1, b1) + t(α, β),

where (α, β) = (a2 − a1, b2 − b1). We thus obtain

x = a1 + tα

y = b1 + tβ,

which are the parametric equations of the line in terms of plane coordinates. The parameter
t is the coordinate of a point P (x, y) on the line with respect to the ruler with origin A and
unit point B. The numerical vector (α, β) is a direction vector of the line. It is determined
by the line up to multiplication by a non-zero scalar. If α = 0, this is the line x = a1; if
β = 0, this is the line y = 0. If b1 and b2 are both non-zero, the equations can be written
in symmetric form

x1 − a1

α
=

x2 − a2

β
,

which can be simplified to
βx− αy = βa1 − αa2.

The general equation of a line in a plane with plane coordinates x, y is therefore

ax + by = c

with a, b not both zero. A direction vector for this line is (−b, a). If b 6= 0, the line has the
equation

y = mx + b

with m = −a/b (the slope of the line) and b the y-coordinate of the point of intersection of
this line with the y-axis (the y-intercept of the line). If (x1, y1), (x2, y2) are two points on
this line, we have

y1 = mx1 + b, y2 = mx2 + b

and so y1 − y2 = m(x1 − x2) yielding

m =
y1 − y2

x1 − x2
.

If a is the x-intercept, then 0 = ma + b and b = −ma and the equation of the line is then
y = m(x− a).
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Problem 3.7. Find the equations of the sides of the triangle ABC in the coordinate system
having the frame (O, I, J) with O = A, I = B, J = C. Also, find the equations of the
medians and verify that they meet in a point that trisects each median.

Solution. The line through A,B is the x-axis and has equation y = 0; the side through
A,C is the y−axis and has equation x = 0. The line through B(1, 0) and C(0, 1) has slope
−1 and has y-intercept 1. Its equation is therefore y = −x + 1 or x + y = 1. The midpoint
of AB is the point D(1/2, 0) and so the slope of the median CD is −2. The equation of the
line through C, D is therefore y = −2(x − 1) or 2x + y = 1 since the x-intercept is 1. By
symmetry, the median BE, with E(0, 1/2) the mid-point of AC, has equation x + 2y = 1.
The line joining A and the midpoint F (1/2, 1/2) of BC has equation y = x. The lines y = x
and 2x + y + 1 = 0 meet in the point P (1/3, 1/3) and the line x + 3y = 1 passes through
this point. Since

−→
AP = 2

3

−→
AF , the point P divides the line segment AF in the ratio 2 : 1

and, since any one of the vertices could have been chosen as origin, the same result holds
for the other two medians.

We now consider the problem of finding the point of intersection of two non-parallel lines
ax + by = c, dx + ey = f . That the lines are not parallel is equivalent to the statement that
(a, b) 6= k(d, e) for any k. If P (x, y) is the point of intersection of these two lines then

ax + by = c

dx + ey = f.

If we multiply the first equation by e, the second by −b and add the resulting two equations,
we get

(ae− bd)x = ce− bf.

Similarly, adding −d times the first equation to a times the second, we get

(ae− bd)y = af − cd.

If ae− bd 6= 0 we would then have

x =
ce− bf

ae− bd
, y =

af − cd

ae− bd
.

But this is the case as the following result shows.
Theorem 3.2. If d, e are not both zero, then (a, b) = k(d, e) for some k if and only if
ae− bd = 0.

Proof. If (a, b) = k(d, e) then a = kd, b = ke and so ae−be = kde−ked = 0. Conversely,
suppose that ae − bd = 0. If d 6= 0, we then have b = e(a/d) so that (a, b) = k(d, e) with
k = a/d. If e 6= 0, we have (a, b) = k(d, e) with k = b/e. Q.E.D

The above formula for the point of intersection of two non-parallel lines ax + by =
c, dx + ey = f expresses the coordinates of the point of intersection these lines as ratios of
similar looking expressions. To bring out the connection, we write down the coefficients of
x, y in the equations of the two lines as a vertical list containing two rows of numbers, the
first row being a b (the coefficients of x, y in the first equation) and the second being d e
(the coefficients of x, y in the second equation). We get the following array

A =
[

a b
d e

]
,

where the brackets are used to delineate the list. Such an arrary is called also called a
matrix, in this case a 2 × 2 matrix to indicate that it has 2 rows with 2 entries in each
row (or, equivalently, 2 columns with 2 entries in each column. The matrix A is called the
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coefficient matrix of the system. The number ∆ = ae− bd is called the determinant of the
matrix A and is denoted by det(A) or simply |A|. With this notation, we have

det(A) =
∣∣∣∣

a b
d e

∣∣∣∣ = ae− bd.

If A1 is the 2× 2 matrix obtained from A by replacing the first column of A by the column
of constants c, f , and A2 is the 2×2 matrix obtained form A by replacing the second column
of A by the column of constants c, f , we obtain

∆1 = |A1| =
∣∣∣∣

c b
f e

∣∣∣∣ = ce− bf,

∆2 = |A2| =
∣∣∣∣

a c
d f

∣∣∣∣ = af − bc.

The coordinates of the point of intersection are thus given by

x = ∆1/∆, y = ∆2/∆.

This formula is known as Cramer’s Rule. The above yields the following general theorem
about systems of two linear equations in two variables.
Theorem 3.3. The system of equations

ax + by = c

dx + ey = f

has a unique solution iff the determinant of the coefficient matrix is not zero, in which case
the solution is given by

x =

∣∣∣∣
c b
f e

∣∣∣∣
∣∣∣∣

a b
d e

∣∣∣∣
, y =

∣∣∣∣
a c
d f

∣∣∣∣
∣∣∣∣

a b
d e

∣∣∣∣
.

3.3. Exercises. 1. Find the equation of the line passing through the points A(12, 3),
B(4, 11).

2. Find the equation of the line passing through the points A(111, 23), B(111, 234).

3. Find the intersection of the two lines 23x + 64y = 12, 12x− 23y = 10.

4. Find the equation of the line parallel to the line 13x − 65y = 45 and passing through
A(5, 1).

5. Verify that the diagonals of a parallelogram bisect each other by finding the equations
of the diagonals in a coordinate system having one vertex as origin and the two adjacent
vertices as unit points.

6. Use Cramer’s rule to find parametric equations for the line of intersection of the planes
12x− 13y + 7z = 1, 10x + 11y − 5z = 2. (Hint: Bring the terms involving z to the right of
the equality sign and solve for x, y.)

7. Using determinates, solve the following system of linear equations

12x− 13y + 7z = 1
10x + 11y − 5z = 2
13x + 7y − 11z = 3

8. Let A(x1, y1), B(x2, y2) be distinct points and let P 6= A be point on the line L joining
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A,B. If ax + by + c = 0 is the equation of any line which is not parallel to L and passes
through P , show that

BP

AP
=

ax2 + by2 + c

ax1 + by1 + c
.

9. Let A, B,C be distinct points on a line L and let A′, B′, C ′ be distinct points on a line

L′ which does not meet L in any of the above points. If the line joining C and B′ meets the
line joining C ′ and B in a point P , the line joining B and A′ meets the line joining A and
B′ in a point Q and the line joining A and C ′ meets the line joining C and A′ in a point R,
show that P, Q,R are collinear.

3.4. Normal Equations of Planes. In a pevious section we have shown that, in a given
coordinate system, the points P whose coordinates x, y, z satisfy the equation

ax + by + cz = d

form a plane. Such an equation is called a normal equation for the plane. The following
result shows the the converse is true.

Theorem 3.4. Any plane has a normal equation.

Proof. Let x = a+a1s+a2t, y = b+b1s+b2t, z = c+c1s+c2t be parametric equations
for a plane Π. If ∣∣∣∣

b1 c1

b2 c2

∣∣∣∣ 6= 0,

we can, using Cramer’s rule, solve the system

a1s + a2t = x− a

b1s + b2t = y − b

for s, t in terms of x, y. This gives

s =

∣∣∣∣
x− a a2

y − b b2

∣∣∣∣
∣∣∣∣

a1 a2

b1 b2

∣∣∣∣
=

b2(x− a)− a2(y − b)
a1b2 − a2b1

,

t =

∣∣∣∣
a1 x− a
b1 y − b

∣∣∣∣
∣∣∣∣

a1 a2

b1 b2

∣∣∣∣
=

a1(y − b)− b1(x− a)
a1b2 − a2b1

.

Substituting this in z − c = c1s + c2t and simplifying, we get

(a1b2 − a2b1)(z − c) = (c1b2 − c2b1)(x− a) + (a1c2 − a2c1)(y − b),

from which we obtain
n1(x− a) + n2(y − b) + n3(z − c) = 0

with

n1 =
∣∣∣∣

b1 c1

b2 c2

∣∣∣∣ , n2 = −
∣∣∣∣

a1 c1

a2 c2

∣∣∣∣ , n3 =
∣∣∣∣

a1 b1

a2 b2

∣∣∣∣ .

Since the above equation is the equation of a plane containing Π, it must be a normal
equation for Π.

If

n1 =
∣∣∣∣

b1 c1

b2 c2

∣∣∣∣ 6= 0,
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we can solve the system

b1s + b2t = y − b

c1s + c2t = z − c

for s, t in terms of y, z to get

s =

∣∣∣∣
y − b b2

z − c c2

∣∣∣∣
∣∣∣∣

b1 b2

c1 c2

∣∣∣∣
=

c2(y − b)− b2(z − c)
b1c2 − b2c1

,

t =
∣∣∣∣

b1 y − b
c1 z − c

∣∣∣∣
∣∣∣∣

b1 b2

c1 c2

∣∣∣∣ =
b1(z − c)− c1(y − b)

b1c2 − b2c1
.

Substituting this in x− a = a1s + a2t and simplifying, we get

(b1c2 − b2c1)(x− a) = (a1c2 − a2c1)(y − b) + (a2b1 − a1b2)(z − c),

from which we obtain

n1(x− a) + n2(y − b) + n3(z − c) = 0

with n1, n2, n3 as above. If n2 6= 0, we leave it to the reader to show that, solving

a1s + a2t = x− a

c1s + c2t = z − c

for s, t in terms of x, z and substituting this in y − a = b1s + b2t, we get the same equation
for Π after symplifying.

The proof will be finished if we can show that one of n1, n2, n3 is not zero. This is done
in the following Lemma.

Lemma 3.1. If the scalars a1, b1, c1 are not all zero, then (a2, b2, c2) is a scalar multiple of
(a1, b1, c1) iff

∣∣∣∣
a1 a2

b1 b2

∣∣∣∣ =
∣∣∣∣

a1 a2

c1 c2

∣∣∣∣ =
∣∣∣∣

b1 b2

c1 c2

∣∣∣∣ = 0.

Proof. If (a2, b2, c2) = k(a1, b1, c1), then each of the determinants is zero. Conversely,
suppose that each of the determinants is zero. If a1 6= 0, we have (a2, b2) = k1(a1, b1) and
(a2, c2) = k2(a1, c2). But then k1 = a2/a1 = k2 and so (a2, b2, c2) = k1(a1, b1, c1). If b1 6= 0
we have (a2, b2) = k2(a1, b1) and (b2, c2) = k3(b1, c1) which gives k2 = b2/b1 = k3. If c1 6= 0
we have (a2, c2) = k2(a1, c1) and (b2, c2) = k3(b1, c1) which gives k2 = c2/c1 = k3. Q.E.D.

Problem 3.8. Find a normal equation for the plane x = 1+2t+3s, y = 2−4t+s, z = 1−t+s.

Solutiuon. Using Cramer’s Rule, we solve

2t + 3s = x− 1
−4t + s = y − 2
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to get

t =

∣∣∣∣
x− 1 3
y − 2 1

∣∣∣∣
∣∣∣∣

2 3
−4 1

∣∣∣∣
= fracx− 3y + 514,

s =

∣∣∣∣
2 x− 1
−4 y − 2

∣∣∣∣
∣∣∣∣

2 3
−4 1

∣∣∣∣
=

4x + 2y − 8
14

.

Substituting this in z = 1 − t − s and simplifying, we get 5x − y + 15z = 5 as a normal
equation for the given plane.

Our next result shows that a plane has, up to a scalar multiple, only one normal equation.
Theorem 3.5. Let Π1, Π2 be planes with normal equations a1x + b1y + c1z = d1 and
a2x + b2y + c2z = d2 respectively. Then Π1 = Π2 iff (a2, b2, c2, d2) = k(a1, b1, c1, d1) for
some scalar k. The two planes are parallel iff (a1, b1, c1) and (a2, b2, c2) are proportional.

Proof. If (a2, b2, c2, d2) = k(a1, b1, c1, d1) for some scalar k, the equation for Π2 is a
multiple of the equation for Π1 and so Π1 = Π2. Now suppose that

(a2, b2, c2, d2) 6= k(a1, b1, c1, d1)

for any scalar k. We have to show that Π1 6= Π2.
Suppose that (a2, b2, c2) = k(a1, b1, c1) for some scalar k. This implies that d2 6= kd1. If

the two planes had a point P (x, y, z) in common, we could multiply the first equation by k
and subtract it from the second to get d2 − kd1 = 0, contradicting d2 6= kd1. So the planes
do not meet and hence are distinct and parallel.

If (a2, b2, c2) is not a scalar multiple of (a1, b1, c1), then one of the determinants
∣∣∣∣

a1 b1

a2 b2

∣∣∣∣ =
∣∣∣∣

a1 a2

b1 b2

∣∣∣∣ ,

∣∣∣∣
a1 c1

a2 c2

∣∣∣∣ =
∣∣∣∣

a1 a2

c1 c2

∣∣∣∣ ,

∣∣∣∣
b1 c1

b2 c2

∣∣∣∣ =
∣∣∣∣

b1 b2

c1 c2

∣∣∣∣
is not zero. If the first one is not zero then, using Cramer’s Rule, we can solve the system

a1x + b1y = d1 − c1z

a2x + b2y = d2 − c2z

for any z to get

x =

∣∣∣∣
d1 − c1z b1

d2 − c2z b2

∣∣∣∣
∣∣∣∣

a1 b1

a2 b2

∣∣∣∣
=

d1b2 − d2b1

a1b2 − a2b1
− c1b2 − c2b1

a1b2 − a2b1
z,

y =

∣∣∣∣
a1 d1 − c1z
a2 d2 − c2z

∣∣∣∣
∣∣∣∣

a1 b1

a2 b2

∣∣∣∣
=

a2d2 − a2d1

a1b2 − a2b1
− a1c2 − a2c1

a1b2 − a2b1
z.

Setting z = t, we get the parametric equations of a line which shows that Π1 and Π2 meet in
a line and hence that Π1 6= Π2. We get the same result if either of the other two determinants
is not zero. Q.E.D.
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Problem 3.9. Show that the planes 2x− 5y− 3z = 5 and −6x+15y +9z = 10 are distinct
and parallel.

Solution. It suffices to show that the given planes have no point in common. If they
did then, adding 3 times the equation for the first plane to the second, we would get 0 = 25
which is impossible. Hence the two planes do not meet and so are distinct and parallel.
Problem 3.10. Find the line of intersection of the planes 2x−3y+5z = 2, 6x−9y+7z = 4.

Solution. Using Cramer’s Rule, we solve

2x + 5z = 3y + 2
6x + 7z = 9y + 4

to get x = (12y + 3)/8, z = 1/4. Setting y = t, we obtain

x = 3/8 + 3t/4, y = t, z = 1/4

as parametric equations for the line of intersection.

The numerical vector

(n1, n2, n3) = (b1c2 − b2c1, a2c1 − a1c2, a1b2 − a2b1)

is called the vector product of the numerical vectors −→u = (a1, b1, c1), −→v = (a2, b2, c2) and
is denoted by −→u × −→v . If we define the dot (or scalar) product of −→u and −→v to be the
scalar −→u · −→v = a1a2 + b1b2 + c1c2,

the proof of Theorem 3.4 shows that the normal equation of a plane having non-parallel
direction vectors −→u , −→v and passing through A(a, b, c) is

−→u ×−→v · (x− a, y − b, z − c) = 0.

This also shows that, the vector −→w is a linear combination of the non-collinear vectors −→u
and −→v iff −→u ×−→v · −→w = 0.

The scalar −→u ×−→v ·−→w is called the triple scalar product of −→u ,−→v ,−→w . If vectors −→u , −→v , −→w
are coordinate vectors of three geometrical vectors, these geometrical vectors are coplanar
iff −→u ×−→v ·−→w = 0. The triple (−→u ,−→v ,−→w ) is said to be positively oriented if −→u ×−→v ·−→w > 0.
Problem 3.11. Show that the points

A(1, 2, 3), B(2,−1,−2), C(2, 1,−1)

are not collinear and find a normal equation for the plane Π passing through them.

Solution. We first find the direction vectors [
−−→
AB] = (1,−3,−5), [

−→
AC] = (1,−1,−4).

Since (1,−3,−5) × (1,−1,−4) = (7,−1, 3) 6= 0, the given points are not collinear and the
equation of Π is

(7,−1, 3) · (x− 1, y − 2, z − 3) = 0.

This simplifies to 7x− y + 3z − 14 = 0 or 7x− y + 3z = 14.

The vector and scalar products have the following properties:
(1) −→u · −→u ≥ 0 with equality iff −→u = (0, 0, 0);
(2) −→u · −→v = −→v · −→u ;
(3) (a−→u + b−→v ) · −→w = a−→u · −→w + b−→v · −→w ;
(4) −→u ×−→u =

−→
0 , −→u ×−→v = −−→v ×−→u ;

(5) (a−→u + b−→v )×−→w = a−→u ×−→w + b−→v ×−→w ;
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(6) −→u ×−→v · −→w= −→w ×−→u · −→v = −→v ×−→w · −→u ;
(7) If −→v1 = a1

−→u + a2
−→v + a3

−→w ), −→v2 = b1
−→u + b2

−→v + b3
−→w , then

−→v1 ×−→v2 = (a1b2 − b2a1)−→u ×−→v + (a1b3 − a3b1)−→u ×−→w + (a2b3 − a3b2)−→v ×−→w .

The proofs of these properties are left as exercises.
There is a very pretty application of this to the theory of linear equations. Consider the

system of three equations in three variables x, y, z

a1x + b1y + c1z = d1

a2x + b2y + c2z = d2

a3x + b3y + c3z = d2

If we let −→u 1 = (a1, a2, a3), −→u 2 = (b1, b2, b3), −→u 3 = (c1, c2, c3) and −→v = (d1, d2, d3), then
the above system is equivalent to the single vector equation

x−→u1 + y−→u2 + z−→u3 = −→v .

If −→u 1 × −→u 2 · −→u 3 6= 0, this equation has a unique solution (x, y, z), namely, the coordinate
vector of the point D(d1, d2, d3) with respect to the coordinate system with origin O(0, 0, 0)
and unit points

A(a1, a2, a3), B(b1, b2, b3), C(c1, c2, c3).
Taking the vector product of both sides with −→u 2, we get

x−→u 1 ×−→u 2 + z−→u 3 ×−→u 2 = −→v ×−→u 2.

Taking the dot product of both sides of this equation with −→u 3, we get

x(−→u 1 ×−→u 2 · −→u 3) = −→v ×−→u 2 · −→u 3

since −→u 3×−→u 2 ·−→u 2 = −→u 2×−→u 2 ·−→u 3 = 0. Similarly, taking the vector product with −→u 1 and
then the dot product with −→u 3, one gets

y(−→u 2 ×−→u 1 · −→u 3) = −→v ×−→u 1 · −→u 3,

and, taking the vector product with −→u 1 and then the dot product with −→u 2 we get

z(−→u 3 ×−→u 1 · −→u 2) = −→v ×−→u 1 · −→u 2.

Hence, if −→u 1 ×−→u 2 · −→u 3 6= 0, the system has the unique solution

x =
−→v ×−→u 2 · −→u 3−→u1 ×−→u 2 · −→u 3

, y =
−→u 1 ×−→v · −→u 3−→u 1 ×−→u 2 · −→u 3

, z =
−→u 1 ×−→u 2 · −→v−→u 1 ×−→u 2 · −→u 3

.

On the other hand −→u 1 × −→u 2 · −→u 3 = 0 iff either (i) −→u 1 = (0, 0, 0), (ii) −→u 2 is a multiple of−→u 1 or (iii) −→u 3 is a linear combination of −→u 1 and −→u 2. One of the conditions (i), (ii), (iii)
hold iff we can find x,y1, z1 not all zero with

x1
−→u1 + y1

−→u2 + z1
−→u3 = (0, 0, 0).

Such a relation is called a dependence relation for the vectors −→u 1, −→u 2, −→u 3. If we multiply
this relation by t and then add it to the original vector equation, we get

(x + tx1)−→u 1 + (y + ty1)−→u 2 + (z + tz1)−→u 3 = −→v ,

which shows that the given system of equations either has no solution or an infinite number
if −→u 1 ×−→u 2 · −→u 3 = 0.

This leads us to define the determinant of the 3× 3 matrix

A =




a1 b1 c1

a2 b2 c2

a3 b3 c3
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to be the number

det(A) =

∣∣∣∣∣∣

a1 b1 c1

a2 b2 c2

a3 b3 c3

∣∣∣∣∣∣
= (a1, b1, c1)× (a2, b2, c2) · (a3, b3, c3).

If ∆ = det(A) and ∆i = det(Ai), where Ai is the matrix obtained form A be replacing the
i−th column of A by the column of constants d1, d2, d3, the above yields Cramer’s Rule
for the above system of equations: the system has a unique solution iff ∆ 6= 0 in which case
the solution is x = ∆1/∆, y = ∆2/∆, z = ∆3/∆.

The following result gives another interpretation of the determinant, nemely, as the ratio
of two triple scalar products.

Theorem 3.6. If −→v 1 = a1
−→u 1 + a2

−→u 2 + a3
−→u 3, −→v 2 = b1

−→u 1 + b2
−→u 2 + b3

−→u 3, −→v 3 =
c1
−→u 1 + c2

−→u 2 + c3
−→u 3, and

A =




a1 a2 a3

b1 b2 b3

c1 c2 c3


 ,

we have −→v 1 ×−→v 2 · −→v 3 = det(A)−→u 1 ×−→u 2 · −→u 3.
Proof. We have
−→v 1 ×−→v 2 = (a1b2 − b2a1)−→u 1 ×−→u 2 + (a1b3 − a3b1)−→u 1 ×−→u 3 + (a2b3 − a3b2)−→u 2 ×−→u 3,

and so ~u1 ×−→u 2 · −→u 3 is equal to

(a1b3−a3b1)c3
−→u 1×−→u 2 ·−→u 3 ++(a2b3−a3b1)c2

−→u 1×−→u 3 ·−→u 2 +(a2b3−a3b2)c1
−→u 2×−→u 3 ·−→u 1

since ~u × ~v · −→w = 0 if any two the vectors −→u ,−→v ,−→w are equal. This yields the result since−→u 2 ×−→u 3 · −→u 1 = −→u 1 ×−→u 2 · −→u 3 and
−→u 1 ×−→u 3 · −→u 2 = −→u 2 ×−→u 1 · −→u 3 = −−→u 1 ×−→u 2 · −→u 3.

Q.E.D.

3.5. Exercises. 1. If −→u 1 = (1, 2,−1), −→v = (2, 4, 3), −→w = (3, 4, 1), find
(a): −→u ×−→v , (−→u ×−→v ) · −→w .
(b): (−→u ×−→v )×−→w , −→u × (−→v ×−→w ),
(c): −→u ×−→v · −→w .

2. Find the normal equation of the plane passing through the points A(1, 2, 3), B(2, 4, 1),
C(5, 1, 2).

3. Find the equation of the plane containing the line

x = 1 + 3t, y = 7− 6t, z = 2 + 3t

and not meeting the line

x = 10 + 2t, y = 23 + 7t, z = 39− t.

4. Let a1x + b1y + c1z + d1 = 0, a2x + b2y + c2z + d2 = 0 be distinct planes which meet in
a line L. Show that any plane containing L has an equation of the form

a(a1x + b1y + c1z + d1) + b(a2x + b2y + c2z + d2) = 0

for suitable a, b.

5. Find the plane passing through the point (1, 1,−1) and the line of intersection of the two
planes 12x + 23y + 16z = 12, 11x + 10y − 13z = 11.
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6. Show that ∣∣∣∣∣∣

a1 a2 a3

b1 b2 b3

c1 c2 c3

∣∣∣∣∣∣
= a1

∣∣∣∣
b1 b3

c2 c3

∣∣∣∣− b1

∣∣∣∣
a2 a3

c2 c3

∣∣∣∣ + c1

∣∣∣∣
a2 a3

c2 c3

∣∣∣∣ .

7. Show that |−→u ×−→v |2 + |−→u · −→v |2 = |−→u |2|−→v |2.

4. Change of Plane Coordinates

Using the arithmetic of vectors, we can easily describe what happens when we change
our coordinate system. For simplicity, we start with plane cooordinates.

Let Π be a plane, let (O, I, J) be a frame for Π with associated coordinate system x, y.
If ~i =

−→
OI, ~j =

−→
OJ are the position vectors of the unit points of the first frame and P is a

point of Π, the coordinate vector of P is (x, y) iff
−−→
OP = x~i + y~j.

The points
O′(a, b), I ′(a1, b1), J ′(a2, b2)

of Π form a frame for Π iff O′, I ′, J ′ are not collinear or, equivalently, if
−→
i′ =

−−→
O′I ′ is not a

scalar multiple of
−→
j′ =

−−→
O′J ′. Since

−→
i′ = (a1 − a)~i + (b1 − b)~j,

−→
j′ = (a2 − a)~i + (b2 − b)~j,

this will be true precisely when
∣∣∣∣

a1 − a a2 − b
a2 − a b2 − b

∣∣∣∣ 6= 0.

Let (x′, y′) be the coordinate vector of P with respect to the second frame. Then
−−→
O′P = x′

−→
i′ + y′

−→
j′ .

We now use the fact that
−−→
OP =

−−→
OO′ +

−−→
O′P

=
−−→
OO′ + x′

−→
i′ + y′

−→
j′

= (a~i + b~j) + x′((a1 − a)~i + (b1 − b)~j) + y′((a2 − a)~i + (b2 − b)~j)

= (a + (a1 − a)x′ + (a2 − a)y′)~i + (b + (b1 − b)x′ + (b2 − b)y′)~j

and take coordinates with respect to the first frame to get

x = a + (a1 − a)x′ + (a2 − a)y′,
y = b + (b1 − b)x′ + (b2 − b)y′.

As a check, note that setting (x′, y′) respectively equal to (0, 0), (1, 0), (0, 1) gives the
coordintates of the points O′, I ′, J ′. To get the coordinate vector of P with respect to the
second frame we solve the equations

(a1 − a)x′ + (a2 − a)y′ = x− a,

(b1 − b)x′ + (b2 − b)y′ = y − b.

for x′, y′ in terms of x, y.
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Problem 4.1. Show that the points

O′(1,−1), I ′(2, 1), J ′(3,−2)

form a frame and find the coordinate vector of the point P (3,−4) with respect to this frame.

Solution. Since ∣∣∣∣
1 2
2 −2

∣∣∣∣ = −5 6= 0,

the given points form a frame. The equations giving the change of coordinates are

x = 1 + x′ + 2y′,

y = −1 + 2x′ − y′.

Solving for x′, y′ in terms of x, y, we get

x′ = x/5 + 2y/5 + 1/5,
y′ = 2x/5− y/5− 3/5.

Setting x = 3, y = −4 we get x′ = −4/5, y′ = 7/5. So (−4/5, 7/5) is the coordinate vector
of P (3,−4) with respect to the second frame.

The system of equations

x = a + α1x
′ + α2y

′,

y = b + β1x
′ + β2y

′,

defines a change of plane coordinates iff (α1, β1) is not a scalar multiple of α2, β2) or,
equivalently, iff the matrix

P =
[

α1 α2

β1 β2

]

has a non-zero determinant. The origin of the new coordinate system is O′(a, b) with
I ′(a + α1, b + β1) the unit point on the x′-axis and J ′(a + α2, b + β2) the unit point on the
y′-axis. The matrix P is called the transition matrix from the xy-coordinate system to
the x′y′-coordinate system. The x′y′-coordinate system is said to be positively oriented
relative to the xy-coordinate system if det(P ) > 0.

We have

~i′ = α1
~i + β1

~j,

~j′ = α2
~i + β2

~j.

The matrix

P t =
[

α1 β1

α2 β2

]

is the transpose of the matrix P . By definition, the transpose of an m×n matrix C is the
n×m matrix At whose entry in the i-th row j-th column is the entry in the j−th row i-th
column of A. Note that det(P ) = det(P t).

Example. Since (−1, 1) is not a scalar multiple of (2, 1), the equations

x = 1 +−x′ + 2y′,

y = 1 + x′ + y′,
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are the equations for the change of x, y coordinates to a coordinate system x′, y′ with origin
O′(1, 1) and unit point I ′(0, 2) on the x′-axis and unit point J ′(3, 2) on the y′-axis. The
transition matrix is

P =
[ −1 2

1 1

]

and its transpose is the matrix

P t =
[ −1 1

2 1

]
.

We have
−→
i′ = −~i +~j,
−→
j′ = 2~i +~j.

The parametric equations of the x′ and y′-axes are respectively x = 1 − t, y = 1 + t,
x = 1 + 2t, y = 1 + t. The normal form of these equations are respectively x + y = 2,
x− 2y = −1.

Suppose now that we make two changes of coordinates

x = α1x
′ + α2y

′

y = β1x
′ + β2y

′
x′ = α′1x

′′ + α′2y
′′

y′ = β′1x
′′ + β′2y

′′

where, for simplicity, we have assumed that the origin does not change. To find the change
of coordinates from the x, y-coordinate system to the x′′y′′-coordinate system, we substitute
the expressions for x′, y′ given by the second set of equations into the first set to get

x = α1(α′1x
′′ + α′2y

′′) + α2(β′1x
′′ + β′2y

′′)
y = β1(α′1x

′′ + α′2y
′′) + β2(β′1x

′′ + β′2y
′′)

which, on simplification, becomes

x = (α1α
′
1 + α2β

′
1)x

′′ + (α1α
′
2 + α2β

′
2)y

′′

y = (β1α
′
1 + β2β

′
1)x

′′ + (β1α
′
2 + β2β

′
2)y

′′.

If

P =
[

α1 α2

β1 β2

]
P ′ =

[
α′1 α′2
β′1 β′2

]
,

are respectively the transition matrices from the xy-coordinate system to the x′y′-coordinate
system and from the x′y′-coordinate system to the x′′y′′-coordinate system, then the tran-
sition matrix from the xy-coordinate system to the x′′y′′coordinate system is the matrix

P ′′ =
[

α1α
′
1 + α2β

′
1 α1α

′
2 + α2β

′
2

β1α
′
1 + β2β

′
1 β1α2 + β2β

′
2

]
.

This matrix is called the product of P and P ′ and is denoted by PP ′. If we define
[

a b
] [

a′

b′

]
= aa′ + bb′,

then the i, j-th entry of PP ′ is equal to the i-th row of P times the j-th column of P ′. This
allows one to define the product of an m×2 matrix B and a 2×n matrix C to be the m×n
matrix whos i, j-th entry is the product of the i-th row of B and the j-th column of C. For
example, we have [

a b
c d

] [
x
y

]
=

[
ax + by
cx + dy

]
.
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With these definitions, the equations giving the change of coordinates can be written in the
form

X = PX ′, X ′ = P ′X ′′

with

X =
[

x
y

]
, X ′ =

[
x′

y′

]
, X ′′ =

[
x′′

y′′

]
.

We then have
X = PX ′ = P (P ′X ′′) = (PP ′)X ′′

which yields the associative law for multiplication of 2 × 2 matrices. Indeed, it suffices to
note that, for 2× 2 matrices A,B,C, the i-column of AB is A times the i-column of B and
hence that, if Ci is the i-th column of C, the i-column of A(BC) is A(BCi) since the i-th
column of BC is BCi. But, by the above, A(BCi) = (AB)Ci which is the i-th column of
(AB)C.

Example. If
x = 2x′ + 3y′

y = 5x′ − 7y′
x′ = 5x′′ − 3y′′

y′ = 4x′′ + 3y′′,
we have

x = 22x′ + 3y′

y = −3x′ − 36y′.
since[

2 3
5 −7

] [
5 −3
4 3

]
=

[
(2)(5) + (3)(4) (2)(−3) + (3)(3)

(5)(5) + (−7)(4) (5)(−3) + (−7)(3)

]
=

[
22 3
−3 −36

]
.

To get the transition matrix from the x′y′-coordinate system to the xy-coordinate system,
we solve the equations

α1x
′ + α2y

′ = x

β1x
′ + β2y

′ = y.

for x′, y′, using Cramer’s Rule, to get

x′ = (β2/∆)x− (α2/∆)y,

y′ = (−β1/∆)x + (α1/∆)y,

where ∆ = det(P ). Hence X ′ = QX with

Q =
[

β2/∆ −α2/∆
−β1/∆ α1/∆

]
=

1
∆

[
β2 −α2/
−β1 α1

]
.

Since X = PX ′ = (PQ)X, X ′ = QX = (QP )X ′, we must have PQ = QP = I where

I =
[

1 0
0 1

]
.

The 2 × 2 matrix I is called the identity matrix. The matrix Q is called the inverse
of P and is denoted by P−1 The reader should verify directly that PP−1 = P−1P = I,
det(P−1) = (detP )−1 and (P−1)−1 = P .

Example. If x′, y′ is the coordinate system associated to the frame

(O(0, 0), I ′(2, 1), J ′(−1, 3)),

we have −→
i′ = 2~i +~j−→
j′ = −~i + 3~j

x = 2x′ − y′

y = x′ + 3y′.
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The transition matrix and its inverse are

P =
[

2 −1
1 3

]
, P−1 =

[
3/7 1/7

−1/7 2/7

]

which shows that

x′ = 3x/7y + y/7
y′ = −x/7 + 2y/7

~i = (3/7)
−→
ı′ − (1/7)

−→
′

~j = (1/7)
−→
ı′ + (2/7)

−→
′ .

Thus, in the x′y′-coordinate system, the coordinates of I and J are respectively

(3/7,−1/7), (1/7, 2/7).

Note that det(P ) = 7 while det(P−1) = 1/7.

If we define the sum of two 1× 2 matrices by[
a
b

]
+

[
a′

b′

]
=

[
a + a′

b + b′

]
,

the general change of coordinates formula can be written X = A + PX ′, where A = [a, b]t.
Solving for X ′, we get PX ′ = X − A. We leave it as an exercise for the reader to show
that the 1× 2 matrices form a vector space under the above operation of addition and the
operation of multiplication by scalars defined by c[a, b]t = [ca, cb]t. Multiplying both sides
by P−1, we get

X ′ = P−1(X −A) = P−1X − P−1A

since, as the reader will easily verify,

P (A + B) = PA + PB, P (cA) = cPA

for any m matrix P , any 2× n matrices A,B and any scalar c. If we make a second change
of coordinates X ′ = A′ + P ′X ′′, we have

X = A + PX ′ = A + P (A′ + P ′X ′′) = A + (PA′ + P (P ′X ′′) = (A + PA′) + (PP ′)X ′′.

In a change of coordinates X = A + PX ′, the transition matrix P is the identity matrix iff

x = a + x′,

y = b + y′,

in which case the frame (O′, I ′, J ′) is obtained from the frame (O, I, J) by translation by
the vector a~i + b~j. Note that, in this case, ~i =

−→
ı′ , ~j =

−→
′ .

Example. If the equations giving the change of coordinates is are x = 2+x′, y = −3+y′ or,
equivalently, x′ = x− 2, y′ = x + 3, the new origin is O′(2,−3), the point with x′ = y′ = 0.
The x′-axis, having equation y′ = 0, is the line y = −3, and the y′−axis, having equation
x′ = 0, is the line x = 2. The unit point on the x′−axis, the point with x′ = 1, y′ = 0, is
the point I ′(3,−3), and the unit point on the y′−axis, the point with x′ = 0, y′ = 1 is the
point J ′(2,−2).

In the general case we have X = A + PX ′, so that PX ′ = X − A. Multiplying both
sides by P−1 we obtain

X ′ = P−1(X −A) = P−1X − P−1A,

which shows that the transition matrix from the x′y′-coordinate system is again the inverse
of the transition matrix from the x, y-coordinate system to the x′y′-coordinate system.
Problem 4.2. Find a coordinate system x′, y′ where the x′-axis is the line 2x− y + 1 = 0
and the y′-axis is the line x + 3y − 3 = 0.
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Solution. Let x′ = x + 3y − 3, y′ = 2x− y + 1 which is equivalent to the equation[
x′

y′

]
=

[
1 3
2 −1

] [
x
y

]
+

[ −3
1

]
.

If we multiply both sides of this equation by
[

1 3
2 −1

]−1

=
[

1/7 3/7
2/7 −1/7

]
,

we get[
1/7 3/7
2/7 −1/7

] [
x′

y′

]
=

[
x
y

]
+

[
1/7 3/7
2/7 −1/7

] [ −3
1

]
=

[
x
y

]
+

[
0

−1

]
.

This gives
x = x′/7 + 3y′/7
y = 2x′/7− y′/7 + 1

and shows that x′, y′ is the coordinate system associated to the frame

O′(0, 1), I ′(1/7, 9/7), J ′(3/7, 6/7).

The x′-axis is the line y′ = 0, i.e., 2x − y + 1 = 0, and the y′-axis is the line x′ = 0, i.e.,
x + 3y − 3 = 0.
Problem 4.3. Find the equation of a curve in terms of coordinates x, y of a variable point
P on it if its equation in terms of the coordinates of P with respect to the frame

O′(1, 2), I ′(2, 4), J ′(2, 1)

is x′y′ = 1. Also find the equations of the asymptotes.
Solution. The equation x′y′ = 1 is the equation of a hyperbola with asymptotes the

x′ and y′-axes. We have x = 1 + x′ + y′, y = 2 + 2x′ − y′. Solving for x′, y′, we get x′ =
(x+y−3)/3, y′ = (2x−y)/3 and so the equation x′y′ = 1 becomes (x+y−3)(2x−y)/9 = 1,
which simplifies to

2x2 + xy − y2 − 6x + 3y = 9.

The equations of the asymptotes are x + y − 3 = 0, 2x− y = 0.

In the next problem we use the technique known as completion of squares to simplify
a quadratic equation in two variables. It is based on the simple identity

ax2 + bx + c = a(x + b/2a)2 + c− b2/4a.

This technique will be used in the next section to classify the plane sections of a cone.
Problem 4.4. Sketch the curve 2x2 + xy − y2 − 6x + 3y − 9 = 0.

Solution. This is the reverse of the preceeding problem. To simplify the given equation,
we write it as a polynomial in x, namely,

2x2 + (y − 6)x− y2 + 3y − 9 = 0

and complete the square in x (with a = 2, b = y − 6, c = −y2 + 3y − 9) to get

2(x + y/4− 3/2)2 − (y − 6)2/8− y2 + 3y − 9 = 0,

which simplifies to

2(x + y/4− 3/2)2 − 9y2/8 + 9y/2− 27/2 = 0

and hence to
2(x + y/4− 3/2)2 − 9

8
(y − 2)2 = 9
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since −9y2/8 + 9y/2− 27/2 = −9(y − 2)2/8− 9 on completion of the square in y. Dividing
by 9 we get

2
9
(x + y/4− 3/2)2 − 1

8
(y − 2)2 = 1.

Setting x′ =
√

2(x + y/4 − 3/2)/3, y′ = (y − 2)/2
√

2, the equation becomes x′2 − y′2 = 1
which, on setting x′′ = x′ − y′, y′′ = x′ + y′, becomes x′′y′′ = 1. We have

x′′ =
√

2
6

(2x− y)

y′′ =
√

2
3

(x + y − 3)

If we solve for x, y in terms of x′′, y′′, we get

x = 1 +
√

2x′′ +
√

2y′′′/2

y = 2−
√

2x′′ +
√

2y′′,

which shows that x′′, y′′ is the coordinate system associated to the frame

O′′(1, 2), I ′′(1 +
√

2, 2−
√

2), J ′′(1 +
√

2/2, 2 +
√

2).

In this coordinate system the equation of the given curve is x′′y′′ = 1 which shows that
the given curve is a hyperbola with asymptotes the lines x′′ = 0 and y′′ = 0, i.e., the lines
2x− y = 0 and x + y − 3 = 0.

4.1. Exercises. 1. Show that the points

O′(−2, 1), I ′(3, 5), J ′(5, 3)

form a frame and find the coordinate vector of the point P (−3, 4) with respect to this frame.
Find the equations giving the change of coordinates and write them in matrix form. What
is the transition matrix from the old system to the new one?

2. Let x, y be a coordinate system in a plane and let x′ = 2x + 3y + 4, y′ = 3x + 5y − 3.
Show that (x′, y′) is a coordinate system. Assuming x, y is rectangular, plot the coordinate
axes for this coordinate system. What is the associated frame?

3. If x, y is a given coordinate system in a plane and ax + by + c = 0, dx + ey + cz = 0 are
non-parallel lines, show that there is a coordinate system such that the coordinate vector of
a point P (x, y) in the new coordinate system is

(x′, y′) = (ax + by + c, dx + ey + y).

Find the coordinates of the origin and unit points of this new system. What are the equations
of the new coordinate axes?

4. Find the inverses of the following matrices[
3 11

−2 6

]
,

[
12 11
12 −16

]
,

[
13 −21
21 −11

]
.

5. Verify that both
x = 7x′ − 3y′

y = 6x′ − 2y′
x′ = 9x′′ + 6y′′

y′ = 5x′′ + 4y′′

are equations for a change of coordinates and find the equations for the change of coordinates
from the xy-coordinate system to the x′′y′′-coordinate system and from the x′′y′′-coordinate
system to the xy-coordinate system. Do this by direct substitution and an by the use of
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matrices. Find the determinant of each transition matrix. Which of the coordinate systems
are positively oriented with respect to the xy-coordinate system?

6. Repeat exercise 5 with the equations

x = 2 + 3x′ + 5y′

y = −1 + 7x′ + 4y′
x′ = 6 + 9x′′ − 6y′′

y′ = −1− 2x′′ + 2y′′

7. Find 2× 2 matrices P, Q with PQ 6= QP .

8. If P, Q are 2× 2 matrices, prove that det(PQ) = det(P ) det(Q).

9. If P, Q are 2× 2 matrices with PQ = I or QP=I, show that det(P ) 6= 0 and Q = P−1.

10. If the 2×2 matrices A,B have inverses, show that AB has an inverse and that (AB)−1 =
B−1A−1.

11. Compute


3 −2
4 6

−7 8
5 6




[
2 −7 5
3 6 −3

]
,




3 −2
4 6

−7 8




[
2 −7 5 0
3 6 −3 9

]
.

12. If
x1 = 2r + 3s
x2 = −4r + 5s
x3 = 3r

r = 3y1 + 2y2 − 7y3 + 5y4

s = 2y1 + 4y2 + 3y3 − 2y4
,

show that
x1 = a1y1 + a2y2 + a3y3 + a4y4

x2 = b1y1 + b2y2 + b3y3 + b4y4

x3 = c1y1 + b2y2 + c3y3 + b4y4

where 


a1 a2 a3 a4

b1 b2 b3 b4

c1 c2 c3 c4


 =




2 3
−4 5

3 0




[
3 2 −7 5
2 4 3 −2

]
.

13. If
x1 = a1r1 + b1r2

x2 = a2r1 + b2r2

...
...

xm = amr1 + bmr2

r1 = c1y1 + c2y2 + . . . cnyn

r2 = d1y1 + d2y2 + . . . dnyn,

show that
x1 = a11y1 + a12y2 + . . . a1nyn

x2 = a21y1 + a22y2 + . . . a22nyn

. . .
xm am1y1 + am2y2 + . . . amnyn

where 


a11 a12 . . . a1n

a21 a22 . . . a2n

...
...

. . .
...

am1 am2 . . . amn


 =




a1 b1

a2 b2

...
...

am bm




[
c1 c2 . . . cn

d1 d2 . . . dn

]
.

14. Show that (AB)t = BtAt if A is m× 2 and B is 2× n.
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15. Show that

(
[

x y
] [

a b
c d

]
)
[

x y
]

=
[

x′ y′
]
(
[

a b
c d

]
)
[

x′ y′
]
) = axx′+bxy′+cyx′+dyy′.

16. Sketch the curve whose equation in rectangular coordinates is

45x2 + 14xy + 10y2 + 6x + 8y = 3.

Use completion of squares.

17. Sketch the curve whose equation in rectangular coordinates is

4x2 + 12xy + 9y2 + 3x + 4y = 0.

Use completion of squares.

5. Change of Coordinates in Space

Let (O, I, J,K) be coordinate frame with associated coordinate system x, y, z and let
~i,~j,~k be the position vectors of the unit points I, J,K with respect to the origin O. Let

O′(a, b, c), I ′(a1, b1, c1), J ′(a2, b2, c2), K ′(a3, b3, c3).

be a second frame and let
−→
i′ =

−−→
O′I ′ = (a1 − a)~i + (b1 − b)~j + (c1 − c)~k,

−→
j′ =

−−→
O′J ′ = (a2 − a)~i + (b2 − b)~j + (c2 − c)~k,

−→
k′ =

−−−→
O′K ′ = (a3 − a)~i + (b3 − b)~j + (c3 − c)~k.

If P is a point with coodinates (x, y, z) with respect to the first frame and coordinates
(x′, y′, z′) with respect to the second frame, we have

−−→
OP =

−−→
OO′ +

−−→
O′P ,

=
−−→
OO′ + (x′

−→
i′ + y′

−→
j′ + z′

−→
k′ ).

Taking coordinate vectors with respect to the first frame, we get

x = a + (a1 − a)x′ + (a2 − a)y′ + (a3 − a)z′,
y = b + (b1 − b)x′ + (b2 − b)y′ + (b3 − b)z′,
z = c + (c1 − c)x′ + (c3 − c)y′ + (c3 − c)z′.

To get the coordinate vector of P with respect to the second frame we have to solve this
linear system of equations for x′, y′, z′. This we can do by Gauss-Jordan elimination or by
Cramer’s Rule. Notice that, setting (x′, y′, z′) equal to (0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1),
we get respectively the coordinate vectors of O′, I ′, J ′, K ′ with respect to the first frame.
A given system of equations

x = a + α1x
′ + α2y

′ + α3z
′,

y = b + β1x
′ + β2y

′ + β3z
′,

z = c + γ1x
′ + γ2y

′ + γ3z
′,

are the equations for a change of coordinates iff the vectors
−→u = (α1, β1, γ1), −→v = (α1, β1, γ1), −→w = (α1, β1, γ1),
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represent non-coplanar vectors. A neccessary and sufficient condition for this is that none
of the vectors −→u ,−→v ,−→w be a linear combination of the other two or, equivalently, that

a−→u + b−→v + c−→w = 0 ⇒ a = b = c = 0.

Such a sequence of vectors is said to be linearly independent. A necessary and sufficient
condition for this is that −→u ×−→v · −→w 6= 0 or, what is the same thing, that the matrix

P =




α1 α2 α3

β1 β2 β3

γ1 γ2 γ3




have a non-zero determinant. The matrix P is called the transition matrix from the x, y, z
coordinate system to the x′, y′, z′ coordinate system. The second frame is said to be posi-
tively oriented with respect to the first if det(P ) > 0. We have

−→
i′ = α1

~i + β1
~j + γ1

~k
−→
j′ = α2

~i + β2
~j + γ2

~k
−→
k′ = α3

~i + β3
~j + γ3

~k.

The matrix of coefficients of the vectors ~i,~j,~k is



α1 β1 γ1

α2 β2 γ2

α3 β3 γ3




which is the transpose of P .

Example. Since ∣∣∣∣∣∣

2 −1 2
1 2 −1
1 1 2

∣∣∣∣∣∣
= 11 6= 0,

the equations

x = 1 + 2x′ − y′ + 2z′

y = −1 + x′ + 2y′ − z′

z = 2 + x′ + y′ + 2z′

give a change of coordinates from the x, y, z-coordinate system to a coordinate system
x′, y′, z′ in which the origin is O′(1,−1, 2) and the unit points on the x′, y′, z′-axes are
respectively

I ′(3, 0, 3), J ′(0, 1, 3), K ′(3,−2, 4).

The transition matrix is the matrix

P =




2 −1 2
1 2 −1
1 1 2




and we have
−→
i′ = 2~i +~j + ~k
−→
j′ = −~i + 2~j + ~k
−→
k′ = 2~i−~j + 2~k.
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Suppose now we make two successive changes of coordinates

x = α1x
′ + α2y

′ + α3z
′

y = β1x
′ + β2y

′ + β3z
′

z = γ1x
′ + γ2y

′ + γ3z
′

x′ = α′1x
′′ + α′2y

′′ + α′3z
′′

y′ = β′1x
′′ + β′2y

′′ + β′3z
′′

z′ = γ′1x
′′ + γ′2y

′′ + γ′3z
′′

where again, for simplicity, we assume that the origin does not change. To obtain the
change of coordinates from the xyz-coordinate system to the x′′y′′z′′-coordinate system, we
substitute the expressions for x′, y′, z′ from the seconds set of equations into the first set to
get

x = α1(α′1x
′′ + α′2y

′′ + α′3z
′′) + α2(β′1x

′′ + β′2y
′′ + β′3z

′′) + α3(γ′1x
′′ + γ′2y

′′ + γ′3z
′′)

y = β1(α′1x
′′ + α′2y

′′ + α′3z
′′) + β2(β′1x

′′ + β′2y
′′ + β′3z

′′) + β3(γ′1x
′′ + γ′2y

′′ + γ′3z
′′)

z = γ1(α′1x
′′ + α′2y

′′ + α′3z
′′) + γ2(β′1x

′′ + β′2y
′′ + β′3z

′′) + γ3(γ′1x
′′ + γ′2y

′′ + γ′3z
′′)

which, on simplification, becomes

x = (α1α
′
1 + α2β

′
1 + α3γ

′
1)x

′′ + (α1α
′
2 + α2β

′
2 + α3γ

′
2)y

′′ + (α1α
′
3 + α2β

′
3 + α3γ

′
3)z

′′

y = (β1α
′
1 + β2β

′
1 + β3γ

′
1)x

′′ + (β1α
′
2 + β2β

′
2 + β3γ

′
2)y

′′ + (β1α
′
3 + β2β

′
3 + β3γ

′
3)z

′′

z = (γ1α
′
1 + γ2β

′
1 + γ3γ

′
1)x

′′ + (γ1α
′
2 + γ2β

′
2 + γ3γ

′
2)y

′′ + (γ1α
′
3 + γ2β

′
3 + γ3γ

′
3)z

′′.

If

P =




α1 α2 α3

β1 β2 β3

γ1 γ2 γ3


 P ′ =




α′1 α′2 α′3
β′1 β′2 β′3
γ′1 γ′2 γ′3


 ,

are respectively the transition matrices from the xyz-coordinate system to the x′y′z′ sys-
tem and from the x′y′z′-coordinate system to the x′′y′′z′′-coordinate system, the transition
matrix from the xyz-coordinate system to the x′′y′′z′′-coordinate system is the matrix

P ′′ =




α1α
′
1 + α2β

′
1α3γ

′
1 α1α

′
2 + α2β

′
2 + α3γ

′
2 α1α

′
3 + α2β

′
3 + α3γ

′
3

β1α
′
1 + β2β

′
1 + β3γ

′
1 β1α

′
2 + β2β

′
2 + β3γ

′
2 β1α

′
3 + β2β

′
3 + β3γ

′
3

γ1α
′
1 + γ2β

′
1 + γ3γ

′
1 γ1α

′
2 + γ2β

′
2 + γ3γ

′
2 γ1α

′
3 + γ2β

′
3 + γ3γ

′
3


 .

This matrix is called the product of P and P ′ and is denoted by PP ′. If we define

[
a b c

]



a′

b′

c′


 = aa′ + bb′ + cc′,

then the i, j-th entry of PP ′ is equal to the i-th row of P times the j-th column of P ′. This
allows one to define the product of an m×3 matrix B and a 3×n matrix C to be the m×n
matrix whose i, j-th entry is the product of the i-th row of B and the j-th column of C.
For example, we have 


a b c
d e f
g h k







x
y
z


 =




ax + by + cz
dx + ey + fz
gx + hy + kz


 .

With these definitions, the equations giving the change of coordinates can be written in the
form

X = PX ′, X ′ = P ′X ′′

with

X =




x
y
z


 , X ′ =




x′

y′

z′


 , X ′′ =




x′′

y′′

z′′


 .

We then have
X = PX ′ = P (P ′X ′′) = (PP ′)X ′′
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which yields the associative law for multiplication of 3 × 3 matrices. Indeed, it suffices to
note that, for 3× 3 matrices A,B,C, the i-column of AB is A times the i-column of B and
hence that, if Ci is the i-th column of C, the i-column of A(BC) is A(BCi) since the i-th
column of BC is BCi. But, by the above, A(BCi) = (AB)Ci which is the i-th column of
(AB)C.

Example. If
x = 2x′ + 3y′ + 4z′

y = 5x′ − 7y′ + 3z′

z = 3x′ + 7y′ − 2z′

x′ = 5x′′ − 3y′′ + 2z′′

y′ = 4x′′ + 3y′′ − 7z′′

z′ = 6x′′ + 2y′′ + 6z′′

we have
x = 46x′ + 15y′ + 7z′

y = 15x′ − 30y′ + 77z′

z = 31x′ + 8y′ − 55z′

since 


2 3 4
5 −7 3
3 7 −2







5 −3 2
4 3 −7
6 2 6


 =




(2)(5) + (3)(4) + (4)(6) (2)(−3) + (3)(3) + (4)(2) (2)(2) + (3)(−7) + (4)(6)
(5)(5) + (−7)(4) + (3)(6) (5)(−3) + (−7)(3) + (3)(2) (5)(2) + (−7)(−7) + (3)(6)
(3)(5) + (7)(4) + (−2)(6) (3)(−3) + (7)(3) + (−2)(2) (3)(2) + (7)(−7) + (−2)(6)




=




46 15 7
15 −30 77
31 8 −55


 .

To get the transition matrix from the x′y′-coordinate system to the xy-coordinate system,
we solve the equations

α1x
′ + α2y

′ + α3z
′ = x

β1x
′ + β2y

′ + β3z
′ = y

γ1x
′ + γ2y

′ + γ3z
′ = z

for x′, y′, z′ using Cramer’s Rule, to get

∆x′ = (β2γ3 − β3γ2)x + (α3γ2 − α2γ3)y + (α2β3 − α3β2)z,

∆y′ = (β3γ1 − β1γ3)x + (α1γ3 − α3γ1)y + (β1α3 − β3α1)z,

∆z′ = (β1γ2 − β2γ1)x + (α2γ1 − α1γ2)y + (α1β2 − α2β1)z,

where ∆ = det(P ). Writing this in matrix form, we get X ′ = QX with

Q =
1
∆




∣∣∣∣
β2 β3

γ2 γ3

∣∣∣∣ −
∣∣∣∣

α2 α3

γ2 γ3

∣∣∣∣
∣∣∣∣

α2 α3

β2 β3

∣∣∣∣

−
∣∣∣∣

β1 β3

γ1 γ3

∣∣∣∣
∣∣∣∣

α1 α3

γ1 γ3

∣∣∣∣ −
∣∣∣∣

α1 α3

β1 β3

∣∣∣∣
∣∣∣∣

β1 β2

γ1 γ2

∣∣∣∣ −
∣∣∣∣

α1 α2

γ1 γ2

∣∣∣∣
∣∣∣∣

α1 α2

β1 β2

∣∣∣∣




.
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This matrix is called the inverse of P and is denoted by P−1. The entry in the i-th row j-th
column of P−1 is equal to (−1)i+j/∆ times the determinant of the 2 × 2 matrix obtained
from P by deleting the j-th row and i-th column. Since

X = PX ′ = (PQ)X, X ′ = QX = (QP )X ′,

we must have PP−1 = P−1P = I, where

I =




1 0 0
0 1 0
0 0 1


 .

The 3 × 3 matrix I is called the identity matrix. The reader should verify directly that
PP−1 = P−1P = I.

Example. If
x = 2x′ + 3y′ + 4z′

y = 5x′ − 7y′ + 3z′

z = 3x′ + 7y′ − 2z′,

we have
x′ = −7x/267 + 34y/267 + 37z/267
y′ = 19x/267− 16y/267− 14z/267
z′ = 56x/267− 5y/267− 29z/267

since ∣∣∣∣∣∣

2 3 4
5 −7 3z
3 7 −2

∣∣∣∣∣∣
= 267

and




2 3 4
5 −7 3
3 7 −2



−1

=
1

267




∣∣∣∣
−7 3
7 −2

∣∣∣∣ −
∣∣∣∣

3 4
7 −2

∣∣∣∣
∣∣∣∣

3 4
−7 3

∣∣∣∣

−
∣∣∣∣

5 −7
3 7

∣∣∣∣
∣∣∣∣

2 4
3 −2

∣∣∣∣ −
∣∣∣∣

2 4
5 3

∣∣∣∣
∣∣∣∣

5 −7
3 7

∣∣∣∣ −
∣∣∣∣

2 3
3 7

∣∣∣∣
∣∣∣∣

2 3
5 −7

∣∣∣∣




=
1

267



−7 34 37
19 −16 −14
56 −5 −29


 .

The general change of coordinates formula can be written X = A + PX ′, where A =
[a, b, c]t and where the operations of addition and multiplication by scalars for 1×3 matrices
are defined by




a
b
c


 +




a′

b′

c′


 =




a + a′

b + b′

c + c′


 , t




a
b
c


 =




ta
tb
tc


 .

Under these operations, the 1 × 3 matrices form a vector space. Solving for X ′, we get
PX ′ = X −A. Multiplying both sides by P−1, we get

X ′ = P−1(X −A) = P−1X − P−1A
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since, as the reader will easily verify,

P (A + B) = PA + PB, P (cA) = cPA

for any m× 3 matrix P , any 3× n matrices A,B and any scalar c.

Example. The equations
x = 1 + 2x′ + 3y′ + 4z′

y = −2 + 5x′ − 7y′ + 3z′

z = 3 + 3x′ + 7y′ − 2z′,

can be written X = A + PX ′ with

A =




1
−2
3


 , P =




2 3 4
5 −7 3z
3 7 −2


 .

Since X ′ = P−1X − P−1A and

P−1 =
1

267



−7 34 37
19 −16 −14
56 −5 −29


 ,

we get
x′ = −7x/267 + 34y/267 + 37z/267− 172/267
y′ = 19x/267− 16y/267− 14z/267− 9/267
z′ = 56x/267− 5y/267− 29z/267− 21

If we make a second change of coordinates X ′ = A′ + P ′X ′′, we have

X = A + PX ′ = A + P (A′ + P ′X ′′) = A + (PA′ + P (P ′X ′′) = (A + PA′) + (PP ′)X ′′.

In a change of coordinates X = A + PX ′, the transition matrix P is the identity matrix iff

x = a + x′

y = b + y′

z = c + z′

in which case the frame (O′, I ′, J ′) is obtained from the frame (O, I, J) by translation by
the vector a~i + b~j. Note that, in this case, ~i =

−→
ı′ , ~j =

−→
′ .

Problem 5.1. Find a coordinate system x′, y′, z′ where the x′y′-plane is 2x − y + z = 1,
the y′z′-plane is x + 3y + z = 3 and the x′z′-plane is x− y + z + 1 = 0.

Solution. Let
x′ = x + 3y + z − 3
y′ = x− y + z + 1
z′ = 2x− y + z − 1

which is equivalent to the equation


x′

y′

z′


 =




1 3 1
1 −1 1
2 −1 1







x
y
z


 +



−3

1
−1


 .

If we multiply both sides of this equation by



1 3 1
1 −1 1
2 −1 1



−1

=
1
4




0 −4 4
1 −1 1
1 7 −4


 ,
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we get

1
4




0 −4 4
1 −1 1
1 7 −4







x′

y′

z′


 =




x
y
z


 +



−2
1/2

2


 .

This gives
x = 2− y′ + z′

y = −1/2 + x′/4− y′/4 + z′/4
z = −2 + x′/4 + 7y′/4− z′

and shows that x′, y′, z′ is the coordinate system associated to the frame

O′(2,−1/2, 2), I ′(2,−1/4,−7/4), J ′(1,−3/4,−1/4), K ′(3,−1/4,−3).

The x′y′-plane is the plane z′ = 0, i.e., 2x− y + z− 1 = 0, the xz′′-plane is the plane y′ = 0,
i.e., x− y + z + 1 = 0 and the y′z′-plane is the plane x′ = 0, 1.e., x + 3y + z − 3 = 0.

Theorem 5.1. If A,B are 3× 3 matrices then det(AB) = det(A) det(B).
Proof. Let

A =




a1 a2 a3

b1 b2 b3

c1 c2 c3


 , B =




a′1 a′2 a′3
b′1 b′2 b′3
c′1 c′2 c′3


 .

If −→u 1 = (a′1, a
′
2, a

′
3),

−→u 2 = (b′1, b
′
2, b

′
3),

−→u 3 = (c′1, c
′
2, c

′
3) are the rows of B, the Corollary to

Theorem 3.6 gives
−→u 1 ×−→u 2 · −→u 3 = det(B).

If we let
−→v 1 = a1

−→u 1 + a2
−→u 2 + a3

−→u 3

−→v 2 = b1
−→u 1 + bvectu2 + b3

−→u 3

−→v 3 = c1
−→u 1 + c2

−→u 2 + c3
−→u 3,

the vectors −→v 1, −→v 2, −→v 3 are the rows of AB and so
−→v 1 ×−→v 2 · −→v 3 = det(AB).

But, by Theorem 3.6,
−→v 1 ×−→v 2 · −→v 3 = det(A)−→u 1 ×−→u 2 · −→u 3

which gives the result. Q.E.D.

As a consequence, from PP−1 = I we get that det(P ) det(P−1) = 1 since det(I) = 1.
Hence det(P−1) = det(P )−1 if det(P ) 6= 0. It follows that, if a coordinate system x′, y′, z′ is
positively oriented with respect to the coordinate system x, y, z, then the coordinate system
x, y, z is positively oriented with respect to the coordinate system x, y, z. If this is so and the
coordinate system x′, y′, z′ is positively oriented relative to a coordinate system x′′, y′′, z′′,
then the coordinate system x, y, z is positively oriented relative to the coordinate system
x′′, y′′, z′′. This is so because, if P , P ′, P ′′ are the respective transition matrices, P ′′ = PP ′

and so
det(P ′′) = det(P ) det(P ) > 0

since det(P ) > 0 and det(P ′) > 0. We say that two coordinate systems have the same ori-
entation if they are positively oriented relative to one another. If we choose two coordinate
systems which do not have the same orientation, then any coordinate system has the same
orientation as one of them. It follows that the coordinate systems divide into two classes,
where any two coordinate systems in the same class have the same orientation.
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5.1. Exercises. 1. Show that the points

O′(−2, 1, 3), I ′(3, 5, 2), J ′(5, 3, 4), K ′(3, 5, 7)

form a frame and find the coordinate vector of the point P (−3, 4, 1) with respect to this
frame. Find the equations giving the change of coordinates and write them in matrix form.
What is the transition matrix from the old coordinate system to the new one?

2. Let x, y, z be a given coordinate system and let

x′ = x + 2y + z + 1,

y′ = 2x + 5y − z − 2,

z′ = x + y + 3z + 3.

Find a coordinate frame so that (x′, y′, z′) is the coordinate vector of P (x, y, z) in the new
coordinate system.

3. If x, y, z is a given coordinate system and

a1x + b1y + c1z + d1 = 0, a2x + b2y + c2z + d2 = 0, a3x + b3y + c3z + d3 = 0

are three planes which meet in a single point, show that there is coordinate system such
that the coordinate vector of P (x, y, z) in the new coordinate system is

(a1x + b1y + c1z + d1, a2x + b2y + c2z + d2, a3x + b3y + c3z + d3).

4. Find the inverses of the matrices


1 2 4
−1 4 3

2 3 7


 ,




1 2 4
2 4 1
4 1 2


 .

5. Verify that both

x = 7x′ − 3y′ + z′

y = 6x′ − 2y′ − z′

z = 2x′ − y′ + 2z′

x′ = 9x′′ + 6y′′ + 2z′′

y′ = 5x′′ + 4y′′ + z′′

z′ = x′′ + y′′ + z′′

are equations for a change of coordinates and find the equations for the change of coordinates
from the xy-coordinate system to the x′′y′′-coordinate system and from the x′′y′′-coordinate
system to the xy-coordinate system. Do this by direct substitution and and by the use of
matrices. Find the determinant of each transition matrix. Which of the coordinate systems
are positively oriented with respect to the xy-coordinate system?

6. Repeat exercise 5 with the equations

x = 1 + 7x′ − 3y′ + z′

y = 2 + 6x′ − 2y′ − z′

z = 3 + 2x′ − y′ + 2z′

x′ = −1 + 9x′′ + 6y′′ + 2z′′

y′ = 2 + 5x′′ + 4y′′ + z′′

z′ = x′′ + y′′ + z′′

7. If P is a 3× 3 matrix, prove that det(P t) = det(P ).

8. If P , Q are 3× 3 matrices such that PQ = 1 or QP = 1, show that det(P ) 6= 0 and that
Q = P−1.

9. If the 3×3 matrices A,B have inverses, show that AB has an inverse and that (AB)−1 =
B−1A−1.
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10. Compute

[
3 −2 5
4 6 7

] 


2 −7 5 0
3 6 −3 9
1 5 5 0


 ,

[
2 −3 5

]



3
5
7


 .

11. If
x1 = 2r + 3s + 4t
x2 = −4r + 5s + t
x3 = 3r − 7s + 6t

r = 3y1 + 2y2 − 7y3 + 5y4

s = 2y1 + 4y2 + 3y3 − 2y4

t = 3y1 − 2y2 − 5y4

,

show that
x1 = a1y1 + a2y2 + a3y3 + a4y4

x2 = b1y1 + b2y2 + b3y3 + b4y4

x3 = c1y1 + b2y2 + c3y3 + b4y4

where 


a1 a2 a3 a4

b1 b2 b3 b4

c1 c2 c3 c4


 =




2 3 4
−4 5 1

3 −7 6







3 2 −7 5
2 4 3 −2
3 −2 0 −5


 .

12. If
x1 = a1r1 + b1r2 + c1r3

x2 = a2r1 + b2r2 + c2r3

...
...

xm = amr1 + bmr2 + cmr3

r1 = c1y1 + c2y2 + . . . cnyn

r2 = d1y1 + d2y2 + . . . dnyn

r3 = e1y1 + e2y2 + . . . enyn,

show that
x1 = a11y1 + a12y2 + . . . a1nyn

x2 = a21y1 + a22y2 + . . . a22nyn

. . .
xm am1y1 + am2y2 + . . . amnyn

where 


a11 a12 . . . a1n

a21 a22 . . . a2n

...
...

. . .
...

am1 am2 . . . amn


 =




a1 b1

a2 b2

...
...

am bm




[
c1 c2 . . . cn

d1 d2 . . . dn

]
.

13. Show that (AB)t = BtAt if A is m× 3 and B is 3× n.

14. Show that

(
[

x y z
]



a b c
d e f
g h k


)

[
x′ y′ z′

]
=

[
x y z

]
(




a b c
d e f
g h k


)

[
x′ y′ z′

]
) =

axx′ + bxy′ + cxz′ + dyx′ + eyy′ + fyz′ + gzx′ + hzy′ + kzz′.
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6. Products of Geometrical Vectors

In Euclidean geometry, the rulers on each line can be calibrated, so that it makes sense
to say that two line segments have the same length. The length of the geometrical vector
−→v =

−−→
AB is defined to be the length of the line segment AB. If −→v =

−−−→
A′B′, we have

|AB| = |A′B′| and so the length of −→v is well-defined; it is denoted by |−→v |. We have
−→v =

−→
0 ⇐⇒ |−→v | = 0.

A vector of length 1 is called a unit vector. If c is a scalar,

|c−→v | = |c||−→v |.
If c = |~v| 6= 0, the vector c−1−→v is a unit vector. There is also a well defined angle θ,
0 ≤ θ ≤ π, between any two directed line segments with the same initial point. If −→u =

−−→
AB

and −→v =
−→
AC, the angle between them is, by definition, the angle between the directed line

segments with initial point A and terminal points B and C. This is independent of the
choice of A. If θ = π/2, the vectors are said to be orthogonal or perpendicular.

If −→u , −→v are vectors with angle θ, the law of cosines can be writen in the following form:

|−→u −−→v |2 = |−→u |2 + |−→v |2 − 2|−→u ||−→v | cos(θ).

Thus −→u , −→v are orthogonal iff

|−→u −−→v |2 = |−→u |2 + |−→v |2,
which is just the Pythagorean Theorem. If −→u and −→v are orthogonal, so are −→u and −−→v ,
and so

|−→u +−→v |2 = |−→u |2 + |−→v |2.
If (O, I, J,K) is a frame for a rectangular coordinate system and P is a point with coordinates
(x, y, z), and

~i =
−→
OI, ~j =

−→
OJ, ~k =

−−→
OK,

we have

|−−→OP |2 = |x~i + y~j + z~k|2
= x2 + |y~j + z~k|2
= x2 + y2 + z2,

since ~i, ~j, ~k are mutually orthogonal of length 1 and since ~i is orthogonal to the vector
y~j + z~k. It follows the the length of any vector with coordinate vector (a, b, c) is

(a2 + b2 + c2)1/2

and that of the line segment joining A(a1, b1, c1) and B(a2, b2, c2) is

|AB| = ((a1 − b1)2 + (b1 − b2)2 + (c1 − c2)2)1/2.

If −→u , −→v are two vectors with coordinate vectors (x1, y1, z1), (x2, y2, z2), we have

|−→u ||−→v | cos(θ) =
1
2
(|−→u +−→v |2 − |−→u |2 − |−→v |2)

= x1x2 + y1y2 + z1z2.

We are thus led to define the scalar (or dot) product of the two geometric vectors −→u , −→v to
be

−→u · −→v = |−→u ||−→v | cos(θ).
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Since this definition is independent of the choice of rectangular frame, we have, in any
rectangular coordinate system,

−→u · −→v = [−→u ] · [−→v ].

In particular, |−→v |2 = −→v · −→v or |−→v | =
√−→v · −→v . Hence, for rectangular coordinate systems,

the dot product of the two geometric vectors is the same as the dot product of their co-
ordinate vectors. This also shows that the dot product of geometric vectors has the same
algebraic properties as the dot product of numerical vectors. More precisely, if −→u ,−→v ,−→w are
geometric vectors and a, b are scalars, we have

(1) −→u · −→u ≥ 0 with equality iff −→u = (0, 0, 0);
(2) −→u · −→v = −→v · −→u ;
(3) (a−→u + b−→v ) · −→w = a−→u · −→w + b−→v · −→w .

If ~i, ~j are orthogonal unit vectors in a plane Π, then any vector ~u in Π can be uniquely
written in the form x~i + y~j. If x1

~i + y1
~j, x2

~i + y2
~j are two vectors in Π, then

x1
~i + y1

~j · x2
~i + y2

~j = x1x2 + y1y2

so that the |x~i + y~j| =
√

x2 + y2. The scalar x1x2 + y1y2 is also called the dot product
of the numerical vectors (x1, y1), (x2, y2). If ax + by + c = 0 is the equation of a line in
Π in a rectangular coordinate system, the geometric vector with coordinate vector (a, b) is
perpendicular to (any vector on) the line since a(x− x0) + b(y− y0) = 0 for any two points
P (x, y), A(x0, y0) on the line.

Let us apply the above to the problem of finding the perpendicular distance between a
point P and a line L. Suppose that A is a point of L and −→v is a direction vector for L. We
are looking for a point Q on L so that

−−→
QP =

−→
AP −−→AQ

is orthogonal to
−→
AQ = t−→v . If −→u =

−→
AP , this is equivalent to

(−→u − t−→v ) · −→v = 0, or ~u · −→v = t−→v −→v ,

from which we get

t =
−→u · −→v
−→v · −→v = |−→u | cos(θ),

where θ is the angle between u and v. Thus Q = A + t~v, where t is given above. The
perpendicular distance between P and L is then |PQ|. Note that

|AQ| = |t−→v | = |−→u · −→v |
−→v · −→v |−→v | = |−→u · −→v |

|−→v | = |−→u ·
−→v
|−→v | |

gives a formula for the length of the orthogonal projection AQ of AP on L. The orthogonal
projection of ~u on L is the vector

(−→u · −→n )−→n ,

where −→n is any unit vector parallel to L; it is independent of the choice of −→n .

For example, let us use this to find the perpendicular distance between P (1, 2,−1) and
the line passing through the points A(−1, 4, 5) and B(5, 2, 1), where the coordinates are
rectangular. The foot Q of the perpenicular from P to the line L has coordinates

(−1, 4, 5) +
(2,−2,−6) · (6,−2,−4)
(6,−2,−4) · (6,−2,−4)

(6,−2,−4)
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since [
−→
AP ] = (2,−2,−6) and [

−−→
AB] = (6,−2,−4). Thus Q has the coordinate vector

(23/7, 18/7, 15/7) and so

|PQ| = |(−16/7,−4/7, 22/7)| =
√

108.

Another way to solve the above problem is to note that Q is the intersection of the plane
which is perpendicular to L and passing through P . A point R lies on this plane iff

−→
PR · −−→AB = 0.

If, in a rectangular coordinate system, R, P and
−−→
AB have coordinate vectors (x, y, z),

(x1, y1, z1) and (a, b, c) we get

a(x− x1) + b(y − y1) + c(z − z1) = 0

for the equation of the plane. This equation can also be written as

ax + by + cz = d

with d = ax1 + by1 + cz1.
The plane in our example above has equation 6x − 2y − 4z = 6 and the parametric

equations of L are
x = −1 + 6t, y = 4− 2t, z = 5− 4t.

The line and the plane therefore meet when

6(−1 + 6t)− 2(4− 26)− 4(5− 4t) = 6,

which gives t = 5/7 and (23/7, 18/7, 15/7) as the coordinates of Q.

If, in a rectangular coordinate system, we want to find the perpendicular distance of a
point Q(x1, y1, z1) to a plane ax + by + cz + d = 0 we use the fact that the line through Q
and perpendicular to the given plane has the vector equation

(x, y, z) = (x1, y1, z1) + t(a, b, c)/
√

a2 + b2 + c2.

Here |t| = |QP | since (a, b, c)/
√

a2 + b2 + c2 is a unit vector. Finding the intersection of the
line and plane, we get

|t| = |ax1 + by1 + cz1 + d|√
a2 + b2 + c2

as the perpendicular distance from Q to the plane. For example, the distance of O(0, 0, 0)
to the plane x + y + z = 1 is | − 1|/√3 = 1/

√
3.

Now consider the problem of finding the distance between two distinct lines L1, L2. If
the lines are parallel, find the equation of the plane passing through some point P1 of L1 and
perpendicular to L1. If P2 is the intersection of this plane with L2, the required distance
is |P1P2|. If the lines are not parallel, find a vector ~n which is perpendicular to both lines
and use this vector to find the equation of the plane containing L1 and perpendicular to ~n.
Since L2 is parallel to this plane, the required distance is then just the distance from any
point of L2 to the plane.

Example. To find the distance between the non-parallel lines

x = −1 + 2t,
y = 2 + t,
z = 3− t,

x = 2 + t,
y = 1− 2t,
z = 2 + t,

we use the fact that the vector

(1,−2, 1)× (2, 1,−1) = (1, 3, 5)
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is the coordinate vector of a geometric vector which is perpedicular to both lines. The given
lines are parallel to any plane perpedicular to this vector. The plane

x + 3y + 5z = 20,

which passes through (−1, 2, 3), contains the first line and the second line is parallel to it.
The distance between the two lines is then |2 + 6 + 10 − 20|/√1 + 9 + 25 = 2/sqrt35, the
distance from P (2, 1, 2) to the plane x + 3y + 5z = 20.

It is natural to ask if we can define, as in the case of the dot product, a vector product
~u× ~v of geometrical vectors ~u, ~v without the use of coordinates so that, in any rectangular
coordinate system,

[−→u ×−→v ] = [−→u ]× [−→v ].

If we choose a rectangular coordinate system with ~i, ~j, ~k as the unit vectors along the x, y
and z−axes and let

−→u = x1
~i + y1

~j + z1
~k), ~v = (x2

~i + y2
~j + z2

~k),

this would force us to define

−→u ×−→v =
[

y1 z1

y2 z2

]
~i−

[
x1 z1

x2 z2

]
~j +

[
x1 y1

x2 y2

]
~k.

This vector product has the following algebraic properties:

(1) −→u ×−→u =
−→
0 , −→u ×−→v = −−→v ×−→u ;

(2) (a−→u + b−→v )×−→w = a~u×−→w + b−→v ×−→w ;
(3) −→w × (a−→u + b−→v ) = a−→w ×−→u + b−→w ×−→v ;
(4) −→u ×−→v · −→w = −→w ×−→u · −→v = −→v ×−→w · −→u ;
(5) |−→u ×−→v |2 + |~u · −→v |2 = |−→u |2|−→v |2.

All of these properties follow immediately from the definition of −→u ×−→v except for property
5 which is left as an exercise. Since

|−→u · −→v | = |−→u ||−→v || cos(θ)|,
where θ is the angle between −→u and −→v , we obtain from property 5

|−→u ×−→v | = |−→u ||−→v | sin(θ),

which is the area of the paralleogram ABCD with−→u =
−−→
AB and−→v =

−→
AC. Since−→u×−→v ·−→u =

0 and −→u ×−→v · −→v = 0, we also see that −→u ×−→v is orthogonal to −→u and −→v . Thus we get, in
the case −→u and −→v are not parallel,

−→u ×−→v = |−→u ||−→v | sin(θ)−→n ,

where −→n is a unit vector perpendicular −→u and −→v . But there are two possible choices for −→n ;
which one do we choose? To see which it is, we use the fact that −→u ×−→v · −→n > 0; in other
words, (−→u ,−→v ,−→n ) is positively oriented with respect to the orientation defined by the given
coordinate system. If we change our coordinate system, the coordinate description of the
vector product does not change if we choose one with the same orientation; otherwise, the
formula for the vector product in terms of coordinates must be preceeded by a minus sign.
So, our vector product is independent of which rectangular coordinate system we choose,
as long as that coordinate system has the same orientation as the the coordinate system we
started with. If we change orientation we get a different vector product, differing only in
sign from the previous one.
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If we designate one orientation of space as being positive and the other negative, then−→u ×−→v is the unique vector such that

[−→u ×−→v ] = [−→u ]× [−→v ],

if the coordinate system is positively oriented, and

[−→u ×−→v ] = −[−→u ]× [−→v ],

if the coordinate system is negatively oriented.
In practice, the orientation of a coordinate system with frame (O, I, J,K) is determined

by the Right-Hand Rule: The orientation is positive if when curling and rotating the fingers
of your right hand in the direction of rotation of

−→
OI into

−→
OJ through the angle θ (0 ≤ θ ≤ π)

between them, your thumb points on the same side of the plane through O,A, B as does
−−→
OC;

otherwise, the orientation is negative. We usually choose a rectangular coordinate system
in space to be positively oriented.

The magnitude of the triple scalar product −→u × −→v · −→w is a the volume of the box or
parallelepiped B = (A,−→u ,−→v ,−→w ) whose vertices are

A,A + e1
−→u + e2

−→v + e3
−→w ,

where e1, e2, e3 = 0 or 1. Indeed, the base is a parallelogram ABCD with
−−→
AB = −→u ,−→

AC = −→v and has area
|−→u ||−→v | sin(θ) = |−→u ×−→v |,

where θ is the angle between −→u and −→v . The height of the box is |−→n ·−→w |, where −→n is a unit
normal to the base. Hence the volume is

|−→u ×−→v ||−→n · −→w | = |(|−→u ×−→v |−→n ) · −→w | = |−→u ×−→v · −→w |.
7. Parallel Projection on a Plane

In this section we give the coordinate description of parallel projection onto a plane.
This will prove to be very useful in drawing planar representations of objects in space.

8. Quadratic Loci

We define a quadratic locus or quadric surface to be a set of points which has the property
that there is a real valued function q and a coordinate system x, y, z with

q(P (x, y, z)) = ax2 + bxy + cxz + dy2 + eyz + fy2 + gx + hy + kz + m

and a, b, c, d, e, f not all zero, such that P is in this set if and only if q(P ) = 0. If we make
a change of coordinates

x = a + α1x
′ + α2y

′ + α3z
′,

y = b + β1x
′ + β2y

′ + β3z
′,

z = c + γ1x
′ + γ2y

′ + γ3z
′,

we have

q(P ) = a′x′2 + b′x′y′ + c′x′z′ + d′y′2 + e′y′z′ + f ′z′2 + g′x′ + h′y′ + k′z′ + m′

with a′, b′, c′, d′, e′, f ′ not all zero. For this reason, we call q a quadratic function. The
function

q0(P (x, y, z)) = ax2 + bxy + cxz + dy2 + eyz + fy2

is called the quadratic form associated to q. The intersection of a quadric surface and a
plane is called a plane quadratic locus. If we choose our new coordinate system so that the
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given plane is the x′y′-plane, the plane quadratic locus will have as equation (in the plane
z′ = 0)

a′x′2 + b′x′y′ + d′y′2 + g′x′ + h′y′ + m′ = 0.

The function q(P (x′, y′)) = a′x′2 + b′x′y′ + d′y′2 + g′x′ + h′y′ + m′ is a quadratic function
on the plane z′ = 0. The function

q0(P (x′, y′)) = a′x′2 + b′x′y′ + d′y′2

is the associated quadratic form.
Let us illustrate this with an important example. Consider the quadratic locus x2 +y2−

z2 = 0. The intersection of this locus with the plane z = r has equation x2 + y2 = r2. If the
x, y coordinate system is rectangular, this is the equation of a circle in the plane z = r with
center (0, 0, r) and radius |r|; otherwise, it is an ellipse. If r = 0, you get a point, namely
O = (0, 0, 0), which can be viewed as a degenerate ellipse or circle. If we project these
curves for varying r′s onto the xy-plane, using parallel projection along the z-axis, we get a
family of concentric ellipses or cirles x2 + y2 = r2 called level curves of the quadratic locus.
These curves get larger as a increases in magnitude and gives us a picture of the quadratic
locus; namely, that of an elliptical or circular cone with two ends or nappes. This picture
is reinforced by noting that the line joining the origin to any other point on the locus lies
entirely on the locus. Indeed, if x2 + y2 − z2 = 0, then

(tx)2 + (ty)2 − (tz)2 = t2(x2 + y2 − z2) = 0.

One can therefore view the locus as the surface traced out by the line joining the origin to a
point (x, y, 1) on the quadratic locus as this point moves around the curve x2+y2 = 1, z = 1.

If we try to find the intersection of our cone x2 + y2 − z2 with the plane y = a we find
a curve with equation z2 − x2 = a2. If a = 0 we get z2 − x2 = (z − x)(z + x) = 0. Hence
z2−x2 = 0 iff either z−x = 0 or z +x = 0, from which we see that the intersection consists
of the two lines z+x = 0, z−x = 0 in the plane y = 0. Let x′ = x+z, y′ = y−a, z′ = z−x.
This defines a new coordinate system with origin (0, a, 0) and unit points

(1/2, a, 1/2), (0, a + 1, 0), (−1/2, a, 1/2).

The x′-axis is the line which has equations x = z, y = a in the original coordinate system
while the z′-axis has equation z = −x, y = a and the y′-axis is the old y-axis. In the new
coordinate system, the equation z2 − x2 = a2 becomes x′z′ = a2 or z′ = a2/x′. Note that,
if we change scale on the x′ and y′-axes by setting x′′ = x′/a, y′′ = y′/a, the curve of
intersection has equation x′′y′′ = 1. Such a curve is called an hyperbola with asymptotes
the lines x′′ = 0 and y′′ = 0. From this we can get a sketch for the curve of intersection
in the plane y = a as seen from a point (0, b, 0) with b > 0, b2 > a2. The lines z = ±x
in the plane y = a are the asymptotes of the hyperbola. The hyperbola does not meet the
asymptotes but gets arbitrarily close as we get farther from the origin.

Now let’s find the curve of intersection of our cone and the plane z + y = 1. This plane
has parametric equations x = s, y = 1 − t, z = t. The parameters s, t are the coordinates
of a point P (x, y, z) on this plane in the coordinate system with origin (0, 1, 0) and unit
points (1, 1, 0), (0, 1−, 1). The curve of intersection has equation s2 +(1− t)2− t2 = 0 which
simplifies to s2 = 1 − 2t. If we let s1 = s, t1 = 1 − 2t we get the equation t1 = s2

1. Such a
curve is called a parabola. To sketch this curve, we use the fact that s1, t1 are the plane
coordinates of a point P on the plane z + y = 1 with respect to the origin (0, 1/2, 1/2),
which corresponds to s1 = t1 = 0, and unit points (1, 1/2, 1/2), (0, 1, 0), which correspond
to s1 = 1, t1 = 0 and s1 = 0, t1 = 1 respectively. Note that, if we change the orientation
on the line t1 = 0 by replacing s1 by −s1, the equation of the curve of intersection remains
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the same; the unit point on the s1-axis becomes (−1, 1/2, 1/2). If we intersect the cone
x2 + y2 = z2 with the plane x− z = 0 we get, as curve of intersection, the line z = x, y = 0.

The curves which are obtained in this way as intersections of a plane with the cone
x2 − y2 = z2 are called conic sections. A conic section is said to be degenerate if it
consists of a single point, or one or two lines. We will show next that a non-degenerate
conic section is either an ellipse or circle, a hyperbola or a parabola. More generally, we will
show that the intersection of a plane with a quadric surface is either empty, two parallel
lines or a conic section. In other words we will show that there is a plane coordinate system
x, y so that the section, if it is not empty and does not consist of a single point or of one or
two lines, has for equation one of the following

x2 + y2 = 1 (ellipse or circle);
xy = 1 (hyperbola);
y = x2 (parabola).

Even though, according to our definition, a quadratic locus which is empty or consists of
two parallel lines is not a conic we shall also call such a locus a degenerate conic.

Problem 8.1. Show that the intersection of the plane z = x + y + 2 and the cone z2 =
3(x2 + y2) is an ellipse or circle. If x, y, z is rectangular, show that the curve of intersection
is not a circle.

Solution. The plane z = x + y + 2 has parametric equations

x = s, y = t, z = s + t + 2.

Substituting in z2 = 2(x2 + y2) we get the equation

s2 − st + t2 − 2s− 2t− 2 = 0

which is the equation of the curve of intersection in terms of the coordinate system s, t of
the plane z = x + y + 2 associated to the frame with origin (0, 0, 2) and unit points (1, 0, 3),
(0, 1, 3). Completing the square in s gives

(s− t/2− 1)2/6 + (t− 2)2/8 = 1

after dividing both sides of the equation by 6. Setting s′ = s − t/2 − 1, t′ = t − 2 or,
equivalently, s = s′ + t′/2 + 2, t = t′ + 2, gives

s′2/6 + t′2/8 = 1

which is the equation of the locus of intersection in the s′, t′-coordinate system of the plane
z = x + y + 2 associated to the frame

O′(2, 2), I ′(3, 2), J ′(5/2, 3)

using s, t-coordinates. If we change the scale on the s′ and t′-axes by setting s′′ = s′/
√

6,
t′′ = t′/

√
8, the equation of the locus is s′′2 + t′′2 = 1. The curve of intersection is either an

ellipse or circle with center (2, 2, 6). The points of this curve corresponding to s′′ = 1, t′′ = 0
and s′′ = 0, t′′ = 0 are

(
√

6 + 2, 2,
√

6 + 6) and (
√

2 + 2, 2
√

2 + 2, 3
√

2 + 6).

If x, y, z is a rectangular coordinate system, the distance of the first point from the center
is 2

√
3 while the distance of the second from the center is

√
26. Since these two distances

are not the same, the curve cannot be a circle.
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8.1. Exercises. 1. Find the curve of intersection of the cone x2 + y2 = z2 with the plane
Π : 2x+ z = 1 and find a coordinate system for the plane Π so that this conic is in standard
form. If x, y, z are rectangular coordinates, find a rectangular coordinate system for Π so
that the conic is in standard form.

2. Sketch the quadric surface x2 + y2 = z by finding its level curves in each coordinate
plane.

8.2. Affine Classification of Conics. Consider the plane quadratic locus defined by the
equation q(P ) = 0 where q is the quadratic function

q(P (x, y)) = ax2 + bxy + cy2 + dx + ey + f

with a, b, c not all zero.
Theorem 8.1. The quadratic locus q(P ) = 0 is a conic.

Proof. We first consider the case a 6= 0 and write q(P (x, y)) as a polynomial in x

q(P ) = ax2 + (d + by)x + cy2 + ey + f,

and then complete the square in x to get

q(P ) = a(x + (d + by)/2a)2 − (d + by)2/4a + cy2 + ey + f

= a(x + (b/2a)y + d/2a)2 + ((4ac− b2)/4a)y2

+ (e− bd/2a)y + f − d2/4a

= a′x′2 + c′y′2 + e′y′ + f ′

where x′ = x + (b/2a)y + d/2a, y′ = y, a′ = a, c′ = (4ac − b2)/4a, e′ = e − bd/2a,
f ′ = f − d2/4a. The pair (x′, y′) is the coordinate vector of the point P (x, y) in the plane
coordinate system with origin O′(−d/2a, 0) and unit point I ′(1 − d/2a, 0) on the x′-axis,
and unit point J ′(−(b+d)/2a, 1) on the y′-axis. Note that the x′-axis is the line y′ = 0, the
x-axis since y′ = y, while the y′-axis is the line x′ = 0, the line x + (b/2a)y + d/2a. In this
new coordinate system the equation of our locus is simpler: the terms b′x′y′ and d′x′ have
disappeared.

Suppose that c′ 6= 0. Then, completing the square in y′, we get

q(P ) = a′x′2 + c′(y′ + e′/2c′)2 + f ′ − e′2/4c′

= a′′x′′2 + c′′y′′2 + f ′′

where x′′ = x′, y′′ = y′ + e′/2c′, a′′ = a′, c′′ = c′, f ′′ = f ′ − e′2/4c′. The pair (x′′, y′′)
is the coordinate vector of the point P (x, y) in the plane coordinate system with origin
O′′((be′− 2c′d)/4a′c′,−e′/2c′) and unit point I ′′(1− (2c′d− be′)/4a,−e′/2c′) on the x′′-axis
and unit point J ′′((be′ − 2c′d + 2b)4a, 1 − e′/2c′) on the y′′-axis. Note that the x′′-axis is
the line y = −e′/2c′ while the y′′-axis is the line x + (b/2a)y + d/2a = 0. If f ′′ = 0, locus
consists either of a single point or two intersecting lines according as a′′c′′ = (4ac− b2)/4 is
greater or less than zero. If f ′′ 6= 0, then

q(x, y) = f ′′(ε1x′′′2 + ε2y
′′′2 + ε3),

where x′′′ = |a′′/f ′′|1/2, y′′′ = |c′′/f ′′|1/2, εi = ±1, which shows that the locus is either
empty, an ellipse or a hyperbola. The first case happens when 4ac − b2 > 0, f ′′ > 0, the
second when 4ac − b2 > 0, f ′′ < 0 and the third when 4ac − b2 < 0. If c′ = 0, e′ 6= 0, then
q(x, y) = a′x′2 + e′y′ + f ′ = a′(x′′2 + εy′′), where x′′ = x′, y′′ = e′y′ + f ′, ε = ±1. This
shows that the locus is a parabola. If c′ = e′ = 0, the locus is either empty, a single line or
two parallel lines. Note that c′ = 0 iff 4ac− b2 = 0.



57

If a = 0 and c 6= 0, we can interchange the roles of x and y and proceed as above. If
a = c = 0, then

q(P ) = (x + e/b)(by + d) + f − ed/b

. If we change coordinates by setting x′ = x + e/b, y′ = by + d, we see that our locus is
either a hyperbola or a pair of intersecting lines. Q.E.D.
Corollary 8.1. There is a plane coordinate system x, y such that

q(P ) = µ(ε1x2 + ε2y
2 + ε3)

or
= µ(ε1x2 − y)

where µ > 0, εi = 0,±1 and ε1 6= 0.
Corollary 8.2. The quadratic function

q(x, y) = ax2 + bxy + cy2 + dx + ey + f

has a minimum value if a > 0, 4ac− b2 > 0 and a maximum value if a < 0, 4ac− b2 > 0.
Corollary 8.3. Let ∆ = b2−4ac. If ∆ > 0, the locus q(P ) = 0 is either a hyperbola or two
lines meeting in a point; if ∆ < 0, the locus is either an ellipse, a single point or empty; if
∆ = 0, the locus is either a parabola, two parallel lines, a single line or empty.

The quantity ∆ = b2 − 4ac is called the discriminant of q with respect to the given
coordinate system. If ∆′ is the discriminant of q in some other coordinate system x′, y′ then
∆ = k2∆ with k 6= 0. To see this we use the easily verified fact that

ax2 + bxy + cy2 =
[

x y
] [

a b/2
b/2 c

] [
x
y

]
.

The matrix

M =
[

a b/2
b/2 c

]

is called the matrix of q in the xy-coordinate system. It is uniquely determined by q. Note
that det(M) = −∆/4.

Since a translation of coordinate frame does not change the discriminant, we can assume
that the change of coordinates is of the form X = PX ′ with

X =
[

x y
]
, X ′ =

[
x′ y′

]
.

Then
ax2 + bxy + cy2 = XtMX = X ′tP tMPX ′

since Xt = X ′tP t. It follows that the matrix M ′ of q in the x′y′-coordinate system is P tMP .
Taking determinants, we get

det(M ′) = det(P t) det(M) det(P ) = det(P )2 det(M).

Since ∆′ = −4 det(M ′) we det ∆ = k2∆ with k = det(P ).

Problem 8.2. Identify the plane quadratic locus

4x2 + 8xy + 3y2 + 16x + 18y + 14 = 0.

Solution. The discriminant is 16 so the locus is either a hyperbola or two intersecting
lines. Completing the square in x, we get 4(x + y + 2)2 − y2 + 2y − 2 = 0. Completing the
square in y, we get 4(x+y+2)2−(y−1)2 = 1. Let x′ = 2x+2y+4, y′ = y−1. Then (x′, y′)
are the coordinates of a point P (x, y) in the plane coordinate system with origin O′(−3, 1)
and unit points A(−5/2, 1) on the x′−axis, which is the line y = 1, and B(−4, 2) on the
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y′−axis, which is the line x + y + 2 = 0. In this coordinate system, the locus has equation
x′2 − y′2 = 1, which is the equation of a hyperbola with asymptotes the lines x′ − y′ = ±1.
These two lines have equations 2x + y + 5 = 0, 2x + 3y = 3 = 0 in the original coordinate
system.

Problem 8.3. Find the maximum value of the function q(x, y) = −x2−2xy−2y2+2x−y+1.
At what point is this value attained?

Solution. Completing the square in x we get

q(x, y) = −(x + y − 1)2 − y2 − 3y + 2.

Completing the square in y, we get

q(x, y) = −(x + y − 1)2 − (y − 3/2)2 + 13/4.

Thus q has 13/4 as a maximum value and attains this value for those (x, y) with x+y−1 = 0
and y − 3/2 = 0. The only solution to these equations is x = −1/2, y = 3/2.

8.3. Exercises. 1. Identify and sketch each of the following plane quadratic loci:
(a): x2 + 6xy + y2 + 2x− y + 1 = 0;
(b): 4x2 + 12xy + 9y2 + 4x + 6y + 1 = 0;
(c): 3x2 + 14xy + 8y2 − 2x + 12y = 8;
(d): 5x2 + 6xy + 5y2 + 10x + 4y + 9 = 0;
(e): 9x2 + 12xy + 4y2 + 15x + 11y + 8 = 0.

2. Find the minimum value of the function q(x, y) = 4x2 + 3xy + y2 + 3x− 2y + 2. At what
point is this value attained?

3. Sketch the quadric surface x2 + y2 = z.

4. Identify and sketch the intersection of the quadric surface x2 + y2 = z and the plane
2x + y + z = 10.

8.4. Affine Properties of Conics. We now use our classification theorem to obtain some
important properties of conics which do not need a Euclidean distance for their proofs.

Theorem 8.2. Let C be a non-degenerate conic and let L0 be a line which intersects C in
two distinct points (such a line is called a secant of C). For each secant L of C parallel to
L0 meeting C in two points AL, BL, let PL be the mid-point of the line segment joining AL

and BL. Then the points PL all lie on a straight line.

Proof. Case I: C is an ellipse. We choose our coordinates x, y so that C has the equation
x2 + y2 = 1. If L0 is parallel to the y−axis, then L has equation x = c and intersects C
in two points (c,

√
1− c2, (c,−√1− c2) if −1 < c < 1. The mid-point of the line segment

joining these two points is (c, 0) which lies on the x− axis for any c. If L0 is not parallel to
the y−axis, then L0 has for equation y = mx + b0 and so L has for equation y = mx + b.
Substituting y = mx + b in the equation x2 + y2 = 1, we get the quadratic equation

(1 + m2)x2 + 2mbx + b2 − 1 = 0.

The discriminant of this quadratic equation is 4(1 + m2 − b2) which is greater than 0 for
|b| < 1 + m2, in which case the quadratic has the distinct roots

x1 =
−mb±√1 + m2 − b2

1 + m2
, x2 =

−mb±√1 + m2 − b2

1 + m2
.
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In this case, the line L meets C in the points (x1, y1), (x2, y2) where yi = mxi + b. Since
x1 + x2 = −2mb/(1 + m2), the mid-point of the line segment joining these two points is

(−mb/(1 + m2),−m2b/(1 + m2) + b) = (−mb/(1 + m2), b/(1 + m2),

which lies on the line x = −my. So the mid-points all lie on the line x + my = 0 which
passes through the origin. Note the the line y = mx also passes through the origin and is
the locus of mid-points of line segments for the lines parallel to mx + y = 0.

Case II: C is a hyperbola. We choose our coordinates x, y so that C has the equation
xy = 1. The line L0 must have the equation y = mx + b0 with m 6= 0 since any line parallel
to the coordinate axes (which are the asymptotes of C) meet C in at most one point.
Substituting y = mx + b in xy = 1, we get the quadratic equation mx2 + bx− 1 = 0 whose
discriminant is b2 + 4m. Thus the quadratic equation has two distinct roots if b2 > −4m,
which is always the case if m > 0. If x1, x2 are these roots we have x1 + x2 = −b/m. Since
L meets C in the points (xi, yi) with yi = mxi + b, the mid-point of the line segment joining
these points is (−bm/2, b/2) which lies on the line x + my = 0. So the locus of mid-points
is x + my = 0. Note that, if m 6= 0, the line y = mx is the locus of mid-points for the lines
parallel to x + my = 0.

Case III: C is a parabola. We choose our coordinates so that the equation of C is y = x2.
Then L0 must have equation y = mx + b0 since the lines parallel to the y − axis meet C
in exactly one point. Substituting y = mx + b in y = x2, we get x2 −mx − b = 0 which
has distinct roots when m2 + 4b > 0, i.e., when b > −m2/4. If x1, x2 are these roots, then
x1 + x2 = m. If (x1, y1), (x2, y2) are the points of intersection of L with C, the mid-point
of the line segment joining these two points lies on the line x = m/2. Q.E.D.

The locus of the mid-points PL is called a diameter of the conic, more precisely, the
diameter conjugate to the secant L0. If the conic is an ellipse or hyperbola, the proof of
the above theorem shows that the diameters all meet in one point. This point is called the
center of the conic. Any line which passes through the center, except for the aysmptotes in
the case of a hyperbola, is a diameter. This implies that, in any coordinate system x, y in
which the center is at the origin, a point P (x, y) lies on the conic if P (−x,−y) lies on the
conic. In such a coordinate system, the equation of the conic must therefore be of the form

ax2 + bxy + cy2 + f = 0.

The proof of this is left as a exercise for the reader. Because they have centers, ellipses and
hyperbolas are called central conics.

Since any diameter is of a central conic is either a secant or is parallel to one, any
diameter has a conjugate diameter. Moreover, the above theorem shows that if L′ is the
diameter conjugate to the diameter L then the conjugate of L′ is L′. If x, y are rulers on
lines which are conjugate diameters of an ellipse or hyperbola, the equation of the conic has
the form

ax2 + by2 + f = 0.

This is because P (±x, pmy) is a point on the conic if P (x, y) is. The proof of this is again
left as an exercise for the reader. The coordinate axes x = 0 and y = 0 are therefore axes
of symmetry for the conic. We shall show later that, if a central conic is not a cirle, there
is exactly one pair of conjugate diameters which are perpendicular. The intersections these
axes with the conic are called the vertices of the conic.

In the case of an ellipse, there are four vertices which are the endpoints of two line
segments on the axes. The axis having the longer line segment is called the principal or
major axis and the other is called the minor axis. A hyperbola has two vertices and the
axis joining these two vertices is called the principal axis of the hyperbola.
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In the case of a parabola, the diameters are parallel to each other. Any line parallel to
a diameter is again a diameter. We shall show later that there is a unique direction so that
the diameter conjugate to a secant with this direction is perpendicular to the secant. This
unique diameter is called the principal axis of the parabola. The intersection of this axis
with the parabola is called the vertex of the parabola. If we take a rectangular coordinate
system with y-axis the principal axis of the parabola and x-axis passing through the vertex,
the equation of the conic has the form y = cx2.

The proof of the above theorem also yields the following result about the intersection of
a line and a conic.

Theorem 8.3. A line meets a non-degenerate conic in at most two points.

To find the intersection of a line and a non-degenerate conic q = 0 with

q = ax2 + bxy + cy2 + dx + ey + f,

we write the line in parametric form x = x0 + αt, y = y0 + βt. Then

q(x0 + αt, y0 + βt) = mt2 + nt + p

with p = q(x0, y0), m = aα2 + bαβ + cβ2 and

n = (bx0 + 2cy0 + e)α + (2ax0 + by0 + d)β.

This gives another proof of the above theorem since m,n, p cannot all be 0 as the non-
degenerate conic q = 0 cannot contain a line. Now suppose that (x0, y0) lies on the conic.
Then

q(x0 + at, y0 + bt) = mt2 + nt

with m,n not both zero. If n 6= 0 the line crosses the conic at (x0, y0) since the sign of
mt2 + nt is different for t > 0 and t < 0 if |t| is sufficiently small. If n = 0 then the line
meets the conic but does not cross it since the sign of mt2 is constant for all t 6= 0. In this
case the line is said to be tangent to the conic at the point (x0, y0). Since 2ax0 + by0 + d
and bx0 + 2cy0 + e are not both zero (otherwise, any line through (x0, y0) would meet the
conic in a single point), the conic has a unique tangent line with equation

(2ax0 + by0 + d)(x− x0) + (bx0 + 2cy0 + e)(y − y0) = 0.

Problem 8.4. Find the equation of the tangent line to the parabola y2 = 4x at the point
(1, 2).

Solution.Writing the equation of the conic in the form y2− 4x = 0, the equation of the
tangent line is −4(x− 1) + 4(y − 2) = 0 or y = x + 1.

To see how two conics intersect we will need to use a parametrization for one of these
curves. Let C be a non-degenerate conic and let x, y be a coordinate system so that C has
equation y = x2 or y = 1/x or x2 + y2 = 1. Note that, in the latter case, it is possible
to choose our coordinate system so that a given point A of C has coordinates (−1, 0).
Therefore, if C is a parabola, the point P (x, y) is on C iff x = t, y = t2 for some real number
t. If C is a hyperbola, we get the rational parametrization x = t, y = 1/t with t 6= 0. The
case of an ellipse is a little more complicated—consider the line y = m(x + 1) which passes
through A(−1, 0). This line intersects C in another point P (x, y) where

(1 + m2)x2 + 2m2x + m2 − 1 = 0.
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Since one root of this quadric is −1 and the sum of the roots is −2m/(1 + m2), we get
x = 1− 2m2/(1 + m2) = (1−m2)/(1 + m2), which gives us the rational parametrization

x =
1− t2

1 + t2
, y =

2t

1 + t2

for the points of C other than A. Note that the numerator and denominators in this
parametrization are polynomials in m of degree at most 2.

If C and C ′ are distinct non-degenerate conics, then (after possibly interchanging C and
C ′) there is a point A of C which does not lie on C ′. We choose a coordinate system x, y so
that the equation for C is as above with the exception point A having coordinates (−1, 0)
in the case C is an ellipse. The equation of C ′ is

ax2 + bxy + cy2 + dx + ey + f = 0.

Using the above parametric representation of a point P (x, y) on C, substituting it in the
equation for C ′, and clearing denominators by multiplying by 1 + t2, we get a polynomial
equation in t of degree at most 4 whose roots give precisely the points P (x, y) in the inter-
section of C and C ′. Since this polynomial is not identically zero (otherwise C is a subset
of C ′, contradicting the fact that A is not a point of C ′, and hence has at most four roots,
we see that there are at most four points in the intersection. We thus obtain the following
result.

Theorem 8.4. Two distinct non-degenerate conics intersect in at most four points.

The same result holds if one conic is degenerate or if the two conics are degenerate and
do not have a line in common.

Suppose Pi(xi, yi) are five distinct points in a plane with coordinate system x, y and we
want to find a conic which passes through each of these points. Since the general equation
of this conic is

ax2 + bxy + cy2 + dx + ey + f = 0,

we can substitute the coordinates of the points Pi in it to give a system of five linear
homogeneous equations in the six unknowns a, b, c, d, e, f . But a homogeneous system of
linear equations always has a non-trivial solution, one in which not all the unknowns are
zero. Indeed, using Gauss-Jordan elimination, there will be at least one non-pivot variable at
the end of the elimination process. So our system has a non-trivial solution. If a = b = c = 0
in this solution then (dx + ey + f)2 = 0 is a conic passing through the five points.

If four or more of the points lie on a line, there are many solutions by degenerate conics.
If three of the points lie on a line and the other two do not lie on this line, there is a
unique conic which is the union of the above line and the line joining the other two points.
If no three of the Pi are collinear there is a unique conic passing through the five points
as any solution of the system of equations gives a non-degenerate conic and two distinct
non-degenerate conics passing through five distinct points is impossible. We thus obtain the
following result:
Theorem 8.5. Given five distinct points, there is a conic which passes through them. If no
four of the five points lie on a line, this conic is unique. If no three of the five points lie on
a line this conic is non-degenerate.

We now give a different proof of the last part of this theorem which will us give a more
precise description of the equations of the conics which pass through five given points, no
three of which are collinear. Let P be the set of conics which pass through four of the
given points, say A,B, C,D. After possibly permuting these points, we can assume that
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the line joining A,B meets the line joining C,D in a unique point O 6= A, B,C, D. Choose
O, A, C as our coordinate frame. Then, with respect to this frame, the points A,B, C,D
have coordinate vectors (1, 0), (r, 0), (0, 1), (0, s). If q(P ) = 0 is the equation of a conic, we

q(P (x, y)) = ax2 + bxy + cy2 + dx + ey + f.

If this conic is in our family, we have q(A) = q(B) = q(C) = q(D) = 0 and so

a + d + f = 0,

r2a + rd + f = 0,

c + e + f = 0,

s2c + se + f = 0.

Solving these equations, we find a = f/r, d = −f(r + 1)/r, c = f/s, e = −f(s + 1)/s and
q(P ) = fq1(P ) + bq2(P ), where

q1(P (x, y)) = x2/r + y2/s− rx/(r + 1)− sy/(s + 1) + 1,

q2(P (x, y)) = xy

Moreover, the conics q1 = 0 and q2 = 0 lie in P. and intersect precisely in the points
A,B, C, D. If we want to have q = 0 to pass through a fifth point E 6= A,B, C, D, it suffices
to choose f, b so that fq1(E) + bq2(E) = 0. This is possible since q1(E) and q2(E) are not
both zero. Since the pair (f, b) is determined up to multiplication by a scalar, there is a
unique conic passing through the five points A,B, C, D, E. Moreover, the equation of this
conic is uniquely determined up to multiplication by a constant.
Corollary 8.4. A conic having at least two distinct points has, up to multiplication by a
constant, a unique equation.

The following result, which comes out of the above proof, gives a simple way to find the
equation of a conic passing through five points.
Theorem 8.6. Let C be a conic passing through four distinct points A, B,C, D no three of
which are collinear. If q1 = 0 and q2 = 0 are distinct conics passing through A,B,C, D then
there are scalars a, b such that C has the equation aq1 + bq2 = 0.

Proof. Let E be any point of C which is different from A,B, C,D. Then, since q1 = 0
and q2 = 0 are distinct and have no line in common, q1(E) and q2(E) cannot be both
zero. We can therefore choose scalars a, b not both zero with aq1(E) + bq2(E) = 0. Hence
aq1 + bq2 = 0 is a conic passing through A,B, C,D, E and so must be C since such a conic
is unique. Q.E.D.
Problem 8.5. Find the equation of the conic which passes through the points

(−1, 2), (1, 3), (4, 9), (2, 1), (3,−1).

Solution. The equation of the line joining (−1, 2) and (2, 1) is x + 3y = 5. This line
does not pass through any of the other points. The equation of the line through (1, 3) and
(4, 9) is 2x− y = −1 and also does not pass through any of the other points. It follows that
no three of the first four points are collinear. If

q1 = (x + 3y − 5)(2x− y + 1) = 2x2 + 5xy − y2 − 9x + 8y − 5

then q1 = 0 is the equation of a conic passing through the first four points. The line joining
(1, 3) and (−1, 2) has equation x−2y = −5 and the line joining (4, 9) and (2, 1) has equation
4x− y = 7. If

q2 = (x− 2y + 5)(4x− y − 7) = 4x2 − 9xy + 2y2 + 13x + 9y − 35
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then q2 = 0 is another conic passing through the first four points which is distinct from
the conic q1 = 0. Let q = aq1 + bq2 where a, b are scalars, not both zero, with aq(3,−1) +
bq2(3,−1) = 0. Since q1(3,−1) = −40 and q2(3,−1) = 60 we have 2a = 3b. Choosing b = 2
gives a = 3 and so

3q1 + 2q2 = 14x2 + 3xy + y2 − x + 42− 85 = 0

is the equation of the conic.

8.5. Exercises. 1. Find the diameter of the ellipse x2 + 2y2 = 5 which is conjugate to the
diameter y = 2x. Find the equation of the tangent to the ellipse at the point (1, 2). Show
that it is parallel to the diameter found above. Can you explain why this must be so?

2. Find the diameter of the conic 3x2− y2 = −1 which is conjugate to the diameter y = 2x.
Show that the tangent to this hyperbola at the point (1, 2) is parallel to the diameter found
above.

3. Find the diameter of the parabola y = 2x2 + 3x + 1 which is conjugate to the secant
y = 2x + 1. Show that the tangent to this parabola at the point of intersection with the
above diameter is parallel to the secant y = 2x + 1.

4. Find the diameter of the conic ax2 + by2 = c which is conjugate to the diameter y = mx.
We assume that abc 6= 0.

5. Find the diameter of the parabola y = ax2 + bx + c which is conjugate to the secant
y = mx + d.

6. Find the equation of the conic passing through the points (3, 2), (3, 5), (5, 3), (2, 3), (2, 2).

7. Find the points of intersection of the two conics

2x2 + y2 = 3
xy = 1.

8. Find the equation of the conic which passes through A(1, 2) and the points of intersection
of the two conics in the previous problem. Sketch all three curves together.

9. Find the equation of a conic which passes through A(1, 1) and the points of intersection
of the conics

x2 − 3xy + 2y2 + 1 = 0
3x2 − 10xy + 9y2 = 3.

Is this conic unique?

8.6. Euclidean Classification of Conics. In this section we are given a rectangular co-
ordinate system x, y in a plane Π and a quadratic locus

q = Ax2 + Bxy + Cy2 + Dx + Ey + F = 0.

If B = 0 then we, after completing the square in x, y separately and translating the axes,
we obtain a new rectangular coordinate system x′, y′ in which the equation of the locus has
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one of the following standard forms:

x′2/a2 + y′2/b2 = 1 (ellipse),
x′2/a2 + y′2/b2 = 0 (single point),
x′2/a2 + y′2/b2 = −1 (empty locus),
x′2/a2 − y′2/b2 = 1 (hyperbola),
x′2/a2 − y′2/b2 = −1 (hyperbola),
x′2/a2 − y′2/b2 = 0 (two intersecting lines),

x′2 − ay′ = 0 (parabola),
y′2 − ax′ = 0 (parabola),

x′2/a2 = 1 (two parallel lines),
x′2 = 0 (a single line),

x′2/a2 = −1 (empty locus),
y′2/a2 = 1 (two parallel lines),

y′2 = 0 (a single line),
y′2/a2 = −1 (empty locus).

If B 6= 0, we want to find a rectangular coordinate system x′, y′ such that, when q is
expressed in terms of the new coordinates, the coefficient of x′y′ is zero. The equations

x = a + α1x
′ + α2y

′,

y = b + β1x
′ + β2y

′

are the equations for a change of rectangular coordinates iff the vectors
−→
i′ = α1

~i + β1
~j,

−→
j′ = α2

~i + β2
~j

are orthogonal and of unit length. This is equivalent to

α2
1 + β2

1 = α2
2 + β2

2 = 1 and α1β1 + α2β2 = 0

or to PP t = 1, where P is the transition matrix. Thus P is the transition matrix for a
change of rectangular coordinates iff P t = P−1. Such a matrix is called an orthogonal
matrix. In this case, if θ is the oriented angle between ~i and

−→
i′ , we have

−→
i′ = cos(θ)~i + sin(θ)~j,
−→
j′ = − sin(θ)~i + cos(θ)~j

if the orientation is not changed and
−→
i′ = cos(θ)~i + sin(θ)~j,
−→
j′ = − sin(θ)~i + cos(θ)~j

if the orientation is reversed. In particular, det(P ) = ±1 which one could also see from

1 = det(PP t) = det(P ) det(P t) = det(P )2.

Thus, for a rectangular change of coordinates in which the orientation is preserved, we have

x = a + cos(θ)x′ − sin(θ)y′,
y = b + sin(θ)x′ + cos(θ)y′
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and we see that the new axes are obtained from the old ones by a translation and then a
rotation through an angle θ.

If P and P ′ are the transition matrices for a rotation of axes through θ and θ′ respectively,
then PP ′ is the transition matrix for a rotation of axes through θ + θ′. This is equivalent to

[
cos(θ) − sin(θ)
sin(θ) cos(θ)

] [
cos(θ′) − sin(θ′)
sin(θ′) cos(θ′)

]
=

[
cos(θ + θ′) − sin(θ + θ′)
sin(θ + θ′) cos(θ + θ′)

]
.

which, after multiplying the matrices and equating corresponding entries, is seen to be
equivalent to

cos(θ + θ′) = cos(θ) cos(θ′)− sin(θ) sin(θ′),
sin(θ + θ′) = sin(θ) cos(θ′) + cos(θ) sin(θ′).

These two identities are the addition laws for the sine and cosine functions. If we set
θ = θ′, we get

cos(2θ) = cos2(θ)− sin2(θ),
sin(2θ) = 2 sin(θ) cos(θ).

This yields

tan(2θ) =
sin(2θ)
cos(2θ)

=
2 tan(θ)

1− tan2(θ)
.

If we now express q in terms of the x′y′-coordinates, the coefficients A′, B′, C ′ of x′2,
x′y′, y′2 respectively are

A′ = A cos2(θ) + B cos(θ) sin(θ) + C sin2(θ),
B′ = −2A sin(θ) cos(θ) + B(cos2(θ)− sin2(θ) + 2C sin(θ) cos(θ),
C ′ = A sin2(θ)−B cos(θ) sin(θ) + cos2(θ).

Note that
A′ + C ′ = A + C.

Using the identities for sin(2θ) and cos(2θ), we get

B′ = (C −A) sin(2θ) + B cos(2θ).

If A = C then B′ = 0 if θ = π/4 or 45 degrees. If A 6= C, we have B′ = 0 if and only if

tan(2θ) = sin(2θ)/ cos(θ) =
B

A− C
.

If we set m = tan(θ), this is the same as

B

A− C
=

2m

1−m2

or, equivalently,
Bm2 + 2(A− C)m−B = 0.

If B 6= 0, this equation has two real roots m1, m2 with m1m2 = −1. These are the slopes
of the new coordinate axes. Since m determines θ up to a multiple of π we choose θ such
that |θ| < π/2. We then have

sin(θ) =
m√

1 + m2
, cos(θ) =

1√
1 + m2

where m can be either of m1, m2.
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Example. Let x, y be a rectangular coordinate system and consider the conic

2x2 + 4xy + 5y2 + 2x + y = 9.

The discriminant ∆ = 14−40 = −24 and so the locus is of elliptic type (ellipse, circle, point
or empty). To simplify the equation of the locus we introduce a new rectangular coordinate
system x′, y′ where the slopes of the coordinate axes are the roots of the equation

4m2 + 6m− 4 = 0.

The roots of this equation are m = 2 and m = −1/2. If we choose m = −1/2, we have

sin(θ) = −1/
√

5, cos(θ) = 2/
√

5

and the transformation equations are

x = 2x′/
√

5 + y′/
√

5,

y = −x′/
√

5 + 2y′/
√

5.

Substituting this in the equation of the conic, we get

2√
5
(2x′+ y′)2 +

4√
5
(2x′+ y′)(−x′+2y′)+ (−x′+2y′)2 +

2√
5
(2x′+ y′)+

1√
5
(−x′+2y′) = 9

which, on simplifying, becomes

x′2 + 6y′2 +
3√
5
x′ +

4√
5
y′ = 9.

Completing the square in x′, we get

(x′ + 3/2
√

5)2 + 6(y′ + 1/3
√

5)2 = 9 + 9/20 + 2/15 = 115/12.

Setting x′′ = x′ + 3/2
√

5, y′′ = y′ + 1/3
√

5 and dividing both sides by 115/12, we get

x′′2

115/12
+

y′′2

115/72
= 1

which is the standard equation of an ellipse with major axis the line y′′ = 0 and minor axis
the line x′′ = 0. Since

x = −2/3 + 2x′′/
√

5 + y′′/
√

5,

y = 1/6− x′′/
√

5 + 2y′′/
√

5,

and

x′′ = 3/2
√

5 + 2x/
√

5− y/
√

5,

y′′ = 1/3
√

5 + x/
√

5 + 2y/
√

5,

the major axis has the equation 3x+6y+1 = 0, the minor axis has the equation 4x−2y+3 = 0
and the center of the ellipse is (−2/3, 1/6).

Another way of doing this problem is to first translate the axes to the center of the
conic. The coordinates of the center can be found by the method of completion of squares
but there is another way of finding it which avoids completing the square. Namely, we have
the following result:
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Theorem 8.7. Let q = Ax2+Bxy+Cy2+Dx+Ey+F and suppose that ∆ = B2−4AC 6= 0.
If (x0, y0) is the unique solution of the equations

2Ax + By + D = 0,

Bx + 2Cy + E = 0,

and x′ = x− x0, y′ = y − y0 then

q = Ax′2 + Bx′y′ + By′2 + q(x0, y0).

Proof. Since the determinate of the coefficient matrix of the system

2Ax + By = −D,

Bx + 2Cy = −E,

is −∆, it has a unique solution (x0, y0). If we make a change of coordinates x = x0 + x′,
y = y0 + y′, we have

q = Ax′2 + Bx′y′ + Cy′2 + (2Ax0 + By0 + D)x′ + (Bx0 + 2Cy0 + E)y′ + q(x0, y0).

and hence
q = Ax′2 + Bx′y′ + Cy′2 + q(x0, y0).

Q.E.D.
Corollary 8.5. If ∆ > 0 and q(x0, y0) 6= 0, the conic q = 0 is a hyperbola with center
(x0, y0). If ∆ > 0 and q(x0, y0) = 0, the locus is a pair of lines meeting at (x0, y0). If ∆ < 0
and Aq(x0, y0) < 0, the locus is an ellipse (or circle) with center (x0, y0). If ∆ < 0 and
Aq(x0, y0) > 0, the locus is empty. If ∆ < 0 and q(x0, y0) = 0, the locus consists of the
single point (x0, y0).
Example. In the previous example, the center is the solution of the system

4x + 4y + 2 = 0,

4x + 10y + 1 = 0,

which is x = −2/3, y = 1/6. Evaluating

q = 2x2 + 4xy + 5y2 + 2x + y − 9

at the center, we get q(−2/3, 1/6) = −115/12 which shows that the locus is an ellipse with
equation

2x′2 + 4x′y′ + 5y′2 = 115/12

where x′ = x + 2/3, y′ = x − 1/6 is the coordinate system obtained by translating the
coordinate frame by (−2/3, 1/6). The x′y′ term can now be eliminated by a rotation of
axes, exactly as in the previous problem.

The above simplification works only when ∆ 6= 0. If B2 − 4AC = 0, we have A,C 6= 0
if B 6= 0 and

q =
1

4A
(2Ax + By)2 + Dx + Ey + F.

Setting x′ = (2Ax + By)/
√

4A2 + B2, y′ = (−Bx + 2Ay)/
√

4A2 + B2, we obtain a rectan-
gular coordinate system x′, y′ with

x = (2Ax′ −By′)/
√

4A+B2,

y = (Bx′ + 2Ay′)/
√

4A2 + B2.
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In this coordinate system we have

q =
1

4A
x′2 + D′x′ + E′y′ + F ′.

The locus q = 0 can then be identified after completing the square in x′.

Example. Consider the locus q = 0 with

q = 3x2 − 12xy + 12y2 + 3x− y + 10.

We have
q = 3(x− 2y)2 + 3x− y + 10.

Setting x′ = (x − 2y)/
√

5, y′ = (2x + y)/
√

5, we get a rectangular coordinate system with
x′-axis the line 2x + y = 0 and y′-axis the line x− 2y = 0. Since

x = (x′ + 2y′)/
√

5,

y = (−2x′ + y′)/
√

5,

the unit point on the x′-axis is I ′(1/
√

5,−2/
√

5) and the unit point on the y′-axis is
J ′(2/

√
5, 1/

√
5). The equation of the locus in the x′y′-coordinate system is

3x′2 +
√

5x′ +
√

5y′ + 10 = 0.

Completing the square in x′, we get

3(x′ +
√

5/6)2 +
√

5y′ + 115/12 = 0.

Dividing by
√

5, we get
3√
5
(x′ +

√
5/6)2 + y′ + 23

√
5/12 = 0.

Setting x′′ = x′ +
√

5/6, y′′ = y′ + 23
√

5/12, we get

y′′ = −3/
√

5x′′2

which is the equation of a parabola with principal axis the line y′′ = 0 and vertex x′′ =
0, y′′ = 0. In the original coordinate system, the equation of the principal axis is 2x + y +
115/12 = 0 and, since

x = −4 + (x′′ + 2y′′)/
√

5,

y = −19/12/ + (−2x′′ + y′′)/
√

5,

the vertex has coordinates (−4,−19/12). The y′′ axis has equation x− 2y + 5/6 = 0. The
unit points on the x′′-axis and y′′ − axis are respectively

I ′′(−4 + 1/
√

5, 19/12− 2/
√

5), J ′′(−4 + 2/
√

5,−19/12 + 1/
√

5).

We now give an alternate way of computing P , A′ and C ′. If we have a quadratic form
q = Ax2 + Bxy + Cy2 and we write it in matrix form, we have

q =
[

x y
] [

A B/2
B/2 C

] [
x
y

]
.

If we make a change of coordinates
[

x
y

]
= P

[
x′

y′

]
.
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with

P =
[

a1 a2

b1 b2

]
,

we have

q =
[

x′ y′
] [

A′ B′/2
B′/2 C ′

] [
x′

y′

]

with [
A′ B′/2

B′/2 C ′

]
= P t

[
A B/2

B/2 C

]
P.

If P is orthogonal and B′ = 0 we have
[

A B/2
B/2 C

]
P = P

[
A′ 0
0 C ′

]
.

which is equivalent to the two equations
[

A B/2
B/2 C

] [
a1

b1

]
= A′

[
a1

b1

]
and

[
A B/2

B/2 C

] [
a2

b2

]
= C ′

[
a2

b2

Given P , this gives a way of computing A′, B′ without having to sustitute for x, y. It also
gives a new way of computing P . Indeed, setting λ1 = A′, λ2 = C ′, these two equations can
be written [

λi −A −B/2
−B/2 λi − C

] [
ai

bi

]
=

[
0
0

]

with i = 1, 2. Then (ai, bi) is a non-zero solution of the homogeneous system

(λi −A)x−B/2y = 0,

−B/2x + (λi − C)y = 0,

where λ = λ1, λ2 satisfy the equation
∣∣∣∣

λ−A −B
−B λ− C

∣∣∣∣ = λ2 − (A + C)λ + AC −B2/4 = 0.

This equation is called the characteristic equation of the matrix

M =
[

A B/2
B/2 C

]

and its roots are called eigenvalues of the matrix M . Note that the roots of this equation
are always real. Note also that

λ1λ2 = AC −B2/4

is the determinant of M and that

λ1 + λ2 = A + C

is the sum of the diagonal elements of M . The sum of the diagonal elements of an n × n
matrix is called the trace of the matrix. Thus each λi can be found by finding the roots of
the characteristic equation of M and the corresponding unit vector (ai, bi) is then a solution
of the system

(λi −A)x−B/2y = 0,

−B/2x + (λi − C)y = 0.
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which determines it uniquely up to mutiplication by ±1 in the case that λ1 6= λ2. The signs
are chosen to make det(P ) = 1. Solutions of this system are called eigenvectors of M
corresponding to the eigenvalue λi. To show that P is orthogonal, we have to show that

d = (a1, b1) · (a2, b2) = 0.

This follows from

λ1d = ([a1, b1]M)
[

a2

b2

]
= [a1, b1](M

[
a2

b2

]
) = λ2d

which yields (λ1 − λ2)d = 0 and hence d = 0 since λ1 6= λ2.
The case λ1 = λ2 arises iff A = C and B = 0 (proof left as an exercise).

Example. The matrix of the quadratic function q = 2x2 + 4xy + 5y2 is
[

2 2
2 5

]

and its characterisic equation is
λ2 − 7λ + 6 = 0.

The roots of this equation are λ = 1, 6. The unit vectors corresponding to λ = 1 is a solution
of

−x− 2y = 0,

−2x− 4y = 0.

which has for solutions c(2,−1). The corresponding unit vectors are therefore

±(2/
√

5,−1/
√

5).

The unit vectors corresponding to λ = 6 are solutions of

4x− 2y = 0,

−2x + 1y = 0.

which has for solutions c(1, 2). The corresponding unit vectors are thus

±(1/
√

5, 2/
√

5).

The transition matrix P can be taken to be[
2/
√

5 1/
√

5
−1/

√
5 2/

√
5

]
.

Therefore, setting

x = (2x′ + y′)/
√

5,

y = (−x′ + 2y′)/
√

5,

we have
q = x′2 + 6y′2.

Note that if we had chosen λ1 = 6, λ2 = 1 then

x = (x′ − 2y′)/
√

5,

y = (2x′ + y′)/
√

5,

would give
q = 6x′2 + 6y′2.
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The corresponding transition matrix is obtained from the one above by interchanging the
columns and then myultiplying the second column by −1 to make det(P ) = 1.

Problem 8.6. Identify the locus with equation

2x2 + 12xy − 3y2 − 14x + 6y = 5

in a rectangular coordinate system x, y and find a rectangualar coordinate system in which
the locus is in standard form.

Solution. Since the discriminant of q = 2x2 + 12xy − 3y2 − 14x + 6y − 17 is 168, the
locus is of hyperbolic type (hyperbola or two intersecting lines). The center is the solution
of the system

2x + 12y − 14 = 0,

12x− 6y − 6 = 0,

namely, the point (1, 1). We therefore introduce the coordinate system x′, y′ where x =
1 + x′, y = 1 + y′. In this coordinate system,

q = 2x′2 + 12x′y′ − 3y′2 − 14

so the locus is a hyperbola. Since the matrix of q in the x′y′-coordinate system is[
2 6
6 −3

]
,

the characteristic equation of q is

λ2 + λ− 42 = 0

whose roots are 6 and −7. Solving the system

(λ− 2)x− 6y = 0,

−6x + (λ + 3)y = 0,

for λ = 6 and λ = −7, we respectively get the general solutions

c(3, 2), c(−2, 3).

Therefore, the solutions of unit length are respectively

±(3/
√

5, 2/
√

5), ±(−2/
√

5, 3/
√

5).

Hence, if we make the following change of cooordinates

x′ = (3x′′ − 2y′′)/
√

5,

y′ = (−2x′′ + 3y′′)/
√

5,

with transition matrix the orthogonal matrix

P =
[

3/
√

5 −2/
√

5
2/
√

5 3/
√

5

]
,

the equation of our locus becomes

6x′′2 − 7y′′2 = 14.

Dividing by 14, we get the standard form of a hyperbola

x′′2

7/3
− y′′2

2
= 1
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with principal axis the x′′-axis and asymptotes the lines
√

6x′′ ±
√

7y′′ = 0.

As an exercise, the reader should find the equations of these lines in the original coordinate
system.

8.7. Exercises.

8.8. Focus-Directrix Description of Conics. A parabola has the equation y2 = cx in
a rectangular coordinate system x, y if the principal axis is the x-axis and the vertex is the
origin O(0, 0). Since

cx = (x + c/4)2 − (x− c/4)2,
the equation of the parabola can be written

y2 = (x + c/4)2 − (x− c/4)2.

Adding (x− c/4)2 to both sides, we get

(x− c/4)2 + y2 = (x + c/4)2.

Taking the positive square root of both sides, we get the equivalent equation
√

(x− c/4)2 + y2 = |x + c/4|
which shows that our parabola is the locus of points P (x, y) that are equidistant from the
point F (c/4, 0) and the line L with equation x = −c/4. The constant c has for absolute
value twice the distance of F to L. The line through F perpendicular to L is the principal
axis of the parabola whose vertex is halfway between F and L. It follows that the point F
and the line L are uniquely determined by the parabola. They are respectively called the
focus and directrix of the parabola.

Example. In a rectangular coordinate system x, y the curve y2 = 4x is a parabola with
focus F (1, 0) and directrix the line x = −1. The curve y2 = −x has focus F (−1/4, 0) and
directrix x = 1/4.

Problem 8.7. In the rectangular coordinate system x, y find the equation of the parabola
with focus (1, 2) and directrix the line x + y + 1 = 0. Write the equation of this parabola
in standard form. What are the coordinates of the vertex and what is the equation of the
principal axis?

Solution. The parabola has for equation

(x− 1)2 + (y − 2)2 = |x + y + 1√
2

|2

which, on simplifying becomes

x2 − 2xy + y2 − 6x− 10y + 9 = 0.

Since the distance of the focus to the directrix is 2
√

2, a standard form for the equation
of the parabola is y′2 = 4

√
2x′. The principal axis is the line through (1, 2) perpendicular

to the line x + y + 1 = 0. Its equation is x − y + 1 = 0. The principal axis and directrix
intersect at the point (−1, 0). The vertex is the point halfway between this point and the
focus; it has coordinates (0, 1).

We now show that any parabola has an important reflection property. Namely, if
P is a point on the parabola, the acute angle made by the line through P parallel to the
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principal axis and the tangent line at P is equal to the acute angle made by the tangent at
P and the line through P and the focus F .

After possibly changing the orientation on the x and y-axes, we can assume that the
equation of our parabola is y2 = 2px with p > 0 being the distance of the focus F (p/2, 0) to
the directrix x = −p/2. If P (a, b) is a point on this parabola, the tangent to the parabola at
this point has (b, p) as direction vector. If θ is the angle between this vector and the vector
(1, 0), we have √

b2 + p2 cos(θ) = (b, c) · (1, 0) = b,

and so θ is the acute angle that the line y = b makes with the tangent to the parabola at
P (a, b). If θ′ is the angle between the vector (−b,−p) and the vector (p/2 − a,−b), which
is the coordinate vector of

−−→
PF , we have

√
b2 + p2 cos(θ′) =

(p/2− a,−b)√
(p/2− a)2 + b2

· (−b,−c) =
b(a + c/2)√

(a− p/2)2 + b2
= b

since
√

(a− p/2)2 + b2 = a + c/2 by the focus-directrix property of the parabola. It follows
that θ′ is the acute angle between the tangent line at P (a, b) and the line joining P and F
and that θ = θ′.

Let us now, more generally, investigate the locus of points P such that the ratio of the
distances from a fixed point F and a fixed line L not passing through F is a constant. If we
choose a coordinate system x, y with origin F and x-axis perpendicular to L so that L has
the equation x = d with d > 0, our locus has the equation

√
x2 + y2 = e|x− d| or x2 + y2 = e2(x− d)2

with e ≥ 0, a constant called the eccentricity of the locus. Simplifying, we get the equiv-
alent equation

(1− e2)x2 + y2 + 2e2dx− e2d2 = 0

which is the equation of a conic with discriminant 4(e2 − 1). If e = 1 we get a parabola.
Suppose that e 6= 1. Then, completing the square in x, we get

(1− e2)(x +
e2d

1− e2
)2 + y2 =

e2d2

1− e2
,

which shows that the conic is a non-degenerate central conic with center (−e2d/(1− e2), 0).
It is a circle, ellipse or hyperbola according as e = 0, e < 1, e > 1. If we translate the axes
so that the new origin is the center of the conic and divide both sides of the equation by
e2d2

1−e2 , we get a new coordinate system x′, y′ in which the conic has the equation

x′2
e2d2

(1−e2)2

+
y′2
e2d2

1−e2

= 1.

If 0 < e < 1, the equation can be written

x′2

a2
+

y′2

b2
= 1

with a = ed/(1 − e2), b = ed/
√

1− e2 > a so that the x′-axis (the line through F perpen-
dicular to L) is the major axis. The original equation becomes

√
(x′ − c)2 + y′2 = e|x′ − `|
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with c = e2d/1− e2, ` = d + c. We also have the relations c2 = a2 − b2, e = c/a, d = b2/c,
` = a/e. By symmetry, we have

√
(x′ + c)2 + y′2 = e|x′ + `|.

The points F , F ′ with x′-coordinates (c, 0), (−c, 0) respectively are the focii of the ellipse
with corresponding directrices x′ = `, x′ = −`.

If e > 1, the equation can be written

x′2

a2
− y′2

b2
= 1

with a = ed/(e2 − 1), b = ed/
√

e2 − 1 so that the principal axis of the hyperbola is the
x′-axis (the line through F perpendicular to L. The original equation becomes

√
(x′ + c)2 + y′2 = e2|x′ + `|

with c = e2d/(e2 − 1) > d, ` = c − d. We also have the relations c2 = a2 + b2, e = c/a,
d = b2/c, ` = a/e. By symmetry, we have

√
(x′ − c)2 + y′2 = e|x′ − `|.

The points F , F ′ with x′-coordinates (c, 0), (−c, 0) respectively are the focii of the hyperbola
with corresponding directrices x′ = `, x = −`.

The ellipse and hyperbola have another description involving only their focii. Consider
first the ellipse whose equation in a rectangular coordinate system x, y is

x2

a2
+

y2

b2
= 1

with a > b. By the above, we have
√

(x− c)2 + y2 = e|x− a/e| = e(a/e− x) = a− ex

since a/e > a ≥ x. Similarly,
√

(x + c)2 + y2 = e|x + a/e| = e(x + a/e) = ex + a

since x ≥ −a > −a/e. Hence,
√

(x− c)2 + y2 +
√

(x + c)2 + y2 = 2a

and so an ellipse is the locus of points the sum of whose distances from 2 fixed points (the
focii) is a constant.

In the case of the hyperbola
x2

a2
− y2

b2
= 1

we have √
(x− c)2 + y2 = e|x− a/e| =

{
ex− a if x ≥ a
a− ex if x ≤ −a

.

Similarly,
√

(x + c)2 + y2 = e|x + a/e| =
{

ex + a if x ≥ a
−ex− a if x ≤ −a

.

√
(x− c)2 + y2 −

√
(x + c)2 + y2 = ±2a

and so the hyperbola is the locus of points the difference of whose distances from two fixed
points (the focii) is, up to sign, a constant.
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We leave as an exercise for the reader the proof of the fact that, if F , F ′ are the focii of
and ellipse or hyperbola and P is any point on the curve, then the vectors

−−→
PF ,

−−→
PF ′ make

equal acute angles with the tangent line to the curve at P .

8.9. Exercises. In these exercises, the given coordinate system is rectangular.

1. Find the focus and directrix of the parabola whose equation is y = 8x2. Sketch the curve
showing clearly the focus and directrix.

2. Find the equation of the parabola with focus (−1, 4) and directrix the line 2x − y = 1.
Find an equation for the parabola which is in standard form. What are the coordinates of
the vertex and what is the equation of the principal axis? Sketch the curve.

3. Find the focii and directrices of the ellipse 3x2 + 2y2 = 12. Sketch the curve showing the
focii, directrices and vertices.

4. Find the equation of the ellipse which, in a rectangular coordinate system, has focus (1, 2),
corresponding directrix 2x+y+1 = 0 and eccentricity 1/2. Sketch this curve showing clearly
the the focii, directrices and vertices.

5. Find the focii and directrices of the hyperbola 3x2 − 2y2 = 1. Sketch the curve showing
clearly the focii, directrices, vertices and asymptotes.

6. Find the equation of the hyperbola with focus (1, 2), corresponding directrix 2x+y+1 = 0
and eccentricity

√
5. Sketch this curve, showing clearly the focii, directrices, vertices and

asymptotes.

8.10. Affine Classification of Quadric Surfaces. In this section we give the affine clas-
sification of quadric surfaces. This is obtained from the following theorem.
Theorem 8.8. If q is a quadratic function on Euclidean space, there is a coordinate system
x′, y′, z′ such that

q(P (x′, y′, z′)) = µ(ε1x′2 + ε2y
′2 + ε3z

′2 + ε4)
or

= µ(ε1x′2 + ε2y
′2 − z′),

where µ > 0, εi = 0,±1 and ε1 6= 0.
Proof. If x, y, z is any coordinate system, we have

q = ax2 + bxy + cxz + dy2 + eyz + fz2 + gx + hy + kz + m.

Writing q as a polynomial in x, we get

q = ax2 + (by + cz + g)x + dy2 + eyz + fz2 + hy + kz + m.

If a 6= 0, we can complete the square in x to get

q(P (x, y, z)) = a(x + (b/2a)y + (c/2a)z + g/2a)2 + q1(Q(0, y, z)),

with q1 a function on the y, z-plane which is quadratic, linear or constant. Let y′z′ be a
coordinate system in the y, z-plane so that

q1(Q(0, y, z)) = µ(ε2y′2 + ε3z
′2 + ε4)

or
= µ(ε2y′2 − z′),

where µ > 0, εi = 0,±1. Setting x′ = λ(x + (b/2a)y + (c/2a)z + g/2a) with λ = |a/µ|1/2,
we get a coordinate system x′, y′, z′ with q(P ) in the required form.
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If a = 0 and d 6= 0, let x′ = y, y′ = x, z′ = z. Then the coefficient of x′2 in q(P ) is
d. Similarly, if a = 0 and f 6= 0 let x′ = z, y′ = y, z− = x to get the same result. If
a = d = f = 0 and b 6= 0, the change of coordinates x′ = x, y′ = −x + y, z′ = z yields
b as the coefficient of x′2; if a = b = d = f = 0 and c 6= 0, the change of coordinates
x′ = x, y′ = y, z′ = −x + z yields c as the coefficient of x′2. If a = b = c = d = f = 0, then
the change of coordinates x = y′, y = x′, z′ = −y + z yields e as the coefficient of x′2. We
are thus reduced to the previous case a 6= 0. Q.E.D.

Corollary 8.6. If ε1 = ε2 = ε3 = 1, the quadratic function q has a minimum value µε4 at
x′ = y′ = z′ = 0. If ε1 = ε2 = ε3 = −1, it has a maximum value of µε4 there.

As in the two variable case, there are criteria for the existence of maxima and minima
of quadratic functions in terms of the coefficients of these functions. We will derive them in
a later chapter.

Problem 8.8. Show that the quadratic function

q(x, y, z) = x2 + 2xy + 2xz + 2y2 + 3z2 + 6x + 2z + 2

has a minimum value. Where is this minimum attained?

Solution. Completing the square in x, we get

q(x, y, z) = (x + y + z + 3)2 + y2 − 2yz + 2z2 − 6y − 4z − 7.

Now, completing the square in y, we get

q(x, y, z) = (x + y + z + 3)2 + (y − z − 3)2 + z2 − 10z − 16.

Finally, completing the square in z, we get

q(x, y, z) = (x + y + z + 3)2 + (y − z − 3)2 + (z − 5)2 − 41

which shows that −41 is the minimum value of q and that this value is attained when
x + y + z + 3 = y − z − 3 = z − 5 = 0. This happens exactly when x = −16, y = 8, z = 5.

A quadric surface is said to be degenerate if its locus is empty or reduces to a point,
line, plane or pair of planes. Using the above theorem we obtain the following classification
of the non-degenerate quadric surfaces:

Theorem 8.9. A non-degerate quadric surface has one of the following equations in a
suitable coordinate system:

(1) x2 + y2 + z2 = 1 (Ellipsoid);
(2) x2 + y2 − z2 = 1 (Hyperboloid of one sheet);
(3) x2 + y2 − z2 = −1 (Hyperboloid of two sheets);
(4) x2 + y2 = z2 (Cone);
(5) x2 + y2 = z (Paraboloid);
(6) x2 − y2 = z (Hyperbolic Paraboloid);
(7) x2 + y2 = 1 (Elliptic Cylinder);
(8) x2 − y2 = 1 (Hyperbolic Cylinder);
(9) x2 = y (Parabolic Cylinder).

Problem 8.9. Identify the quadric surface

x2 + 2xy + 2xz + 2y2 + 3z2 + 6x + 2z + 2 = 0.
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Solution. Using the previous problem, we see that the change of coordinates

x′ = (x + y + 3)/
√

41

y′ = (y − z − 3)/
√

41

z′ = (z − 5)/
√

41

brings the equation of the quadric to the standard form

x′2 + y′2 + z′2 = 1.

The quadric surface is an ellipsoid.

8.11. Euclidean Classification of Quadric Surfaces. Let x, y, z be a rectangular coor-
dinate system and consider the quadric surface q(P ) = k with

q(P (x, y, z)) = Ax2 + 2Bxy + 2Cxz + Dy2 + 2Eyz + Fz2.

Writing this in matrix form, we have q(P (x, y, z)) = XtMX with

X =




x
y
z


 , M =




A B C
B D E
C E F


 .

The matrix M satisfies M = M t; such a matrix is called a symmetric matrix. We want
to find a change of coordinates X = PX ′ so that the new coordinate system x′, y′, z′ is
rectangular and

q(P (x′, y′, z′)) = X ′tP tMPX ′ = λ1x
′2 + λ2y

′2 + λ3z
′2

with M ′ = P tMP a diagonal matrix, i.e.,

M ′ =




λ1 0 0
0 λ2 0
0 0 λ3


 .

If

P =




α1 α2 α3

β1 β2 β3

γ1 γ2 γ3


 ,

we have

x = α1x
′ + α2y

′ + α3z
′

y = β1x
′ + β2y

′ + β3z
′

z = γ1x
′ + γ2y

′ + γ3z
′.

The coordinate system x′, y′, z′ is rectangular if and only if the vectors
−→
i′ = α1

~i + β1
~j + γ1

~k
−→
j′ = α2

~i + β2
~j + γ2

~k
−→
k′ = α3

~i + β3
~j + γ3

~k

are mutually orthogonal unit vectors, i.e.,

α2
i + β2

i + γ2
i = 1 for i = 1, 2, 3

αiαj + βiβj + γiγj = 0 for i < j.
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Such vectors are also called orthonormal. This is equivalent to PP t = I (the identity
matrix) or, equivalently P t = P−1. Such a matrix P is called an orthogonal matrix. The
condition P tMP = M ′ can then be written MP = PM ′ which is equivalent to

MPi = λiPi,

where Pi is the i-th column of P . This is a system of homogeneous equations in the
coordinates of Pi which can be written

(λiI −M)Pi = 0.

A necessary and sufficient condition that this system has a non-zero solution is that

det(λiI −M) = 0

. Evaluating

det(λI −M) =

∣∣∣∣∣∣

λ−A −B −C
−B λ−D −E
−C −F λ− E

∣∣∣∣∣∣
,

we get the polynomial
λ3 + c1λ

2 + c2λ + c3,

where

c1 = −(A + D + F ) = −trace of M

c2 = AD + DF + AF −B2 − C2 − E2 =
∣∣∣∣

A B
B D

∣∣∣∣ +
∣∣∣∣

A C
C F

∣∣∣∣ +
∣∣∣∣

D E
E F

∣∣∣∣
c3 = − det(M).

This polynomial is called the characteristic polynomial of the matrix M . Its roots
λ1, λ2, λ3 are called eigenvalues of M . The solutions of the homogeneous system

(λiI −M)X = 0

are called eigenvectors of M corresponding to the eigenvalue λi. Thus the problem of
finding a rectangular coordinate system x′, y′, z′ such that

q(P (x′, y′, z′)) = λ1x
′2 + λ2y

′2 + λ3z
′2

is equivalent to finding an orthonormal basis of eigenvectors of the symmetric matrix M .
Since the characteristic polynomial of M is a cubic, it has at least one real root λ1.

Let (α1, β1, γ1) be an eigenvector of M , of unit length, corresponding to the eigenvalue λ1

and let (α2, β2, γ2), (α3, β3, γ3) be othogonal unit vectors each of which is orthogonal to
(α1, β1, γ1). If we make the orthogonal change of coordinates X = PX ′ with

P =




α1 α2 α3

β1 β2 β3

γ1 γ2 γ3


 ,

we have

M ′ = P tMP =




λ1 0 0
0 D′ E′

0 E′ F ′




since M ′ is a symmetric matrix. Indeed, M ′t = P tM t(P t)t = P tMP = M ′. We therefore
have

q(P (x′, y′, z′)) = λ1x
′2 + D′y′2 + 2E′y′z′ + F ′z′2
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and we are reduced to diagonalizing the quadratic form

q′ = D′y′2 + 2E′y′z′ + F ′z′2.

If we let
−→
j′′,

−→
k′′ be the unit vectors of a rectangular coordinate system in the x′y′-plane

(with origin O) that diagonalizes q′ and replace the second and third columns of P by the
column matrices [

−→
j′′]t, [

−→
k′′]t with the coordinates taken with respect to the xyz-coordinate

system, we obtain an orthogonal matrix that diagonalizes q. We thus obtain the following
result:

Theorem 8.10. If M is a symmetric 3 matrix, there is an orthogonal 3× 3 matrix P such
that P−1MP is a diagonal matrix.

Corollary 8.7. The roots of the characteristic polynomial of a real symmetric 3× 3 matrix
are all real.

Another important fact about eigenvectors of real symmetric matrices is the following:

Theorem 8.11. Let M be a real symmetric 3× 3 (or 2× 2) matrix. Then eigenvectors of
M corresponding to distinct eigenvalues are orthogonal.

Proof. Let X,Y be eigenvectors of M with eigenvalues λ, µ respectively. Then MX =
λX and MY = λY and hence

λXtY = (λX)tY = (MX)tY = XtMY = Xt(µY ) = µXtY.

This gives (λ−µ)XtY = 0 from which we get XtY = 0 if λ 6= µ. Since XtY is equal to the
dot product of X and Y we obtain the result. Q.E.D.

Example 1. If we apply the above to the quadric surface with equation

x2 − 2xy + 2xz + y2 + 2yz − z2 = 1

the matrix M is equal to 


1 −1 1
−1 1 1

1 1 −1


 .

The characteristic polynomial of this matrix is

λ3 − λ2 − 4λ + 4 = (λ2 − 4)(λ− 1).

The eigenvalues of M are therefore λ = 1,±2. The eigenvectors of M corresponding to
λ = 1 are solutions X of (I −M)X = 0. This equation is equivalent to

y − z = 0
x− z = 0

−x− y + 2z = 0

which has the solutions x = y = z = t with t arbitrary. The eigenvectors with eigenvalue 2
are solutions X of (2I −M)X = 0 giving the equations

x + y − z = 0
x + y − z = 0

−x− y + 3z = 0
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which has the solutions x = −y = t, z = 0 with t arbitrary. Finally, the eigenvectors
corresponding to λ = −1 are solutions of (−2I −M)X = 0 giving the equations

−3x + y − z = 0
x− 3y − z = 0
−x− y − z = 0

which has the solutions x = y = t, z = −2t with t arbitrary. If we choose for the columns
of the matrix P , eigenvectors of length 1 corresponding to the distinct eigenvalues we get
as one possible such P the matrix

P =




1√
3

1√
2

1√
6

1√
3

−1√
2

1√
6

1√
3

0 −2√
6


 .

If we make the change of coordinates X = PX ′, the given quadric has equation

x′2 + 2y′2 − 2z′2 = 1

in the new coordinate system. This new system is positively oriented since det(P ) = 1. The
given quadric is a hyperboloid of one sheet with center of symmetry at the origin.

Example 2. If our quadric has the equation

x2 − 2xy + 2yz + y2 + 2yz − z2 + x− y = 0,

we first diagonalize the associated quadratic form

q = x2 − 2xy + 2yz + y2 + 2yz − z2.

The above example shows that this can be done with the change of coordinates

x = x′/
√

3 + y′/
√

2 + z′/
√

6

y = x′/
√

3− y′/
√

2 + z′/
√

6

y = x′/
√

3− 2z′/
√

6.

If we make this change of coordinates the given quadric has equation

x′2 + 2y′2 − 2z′2 +
√

2y′ = 0

in the new coordinate system. Completing the square in y′, we get the equation

x′2 + 2(y′ +
√

2/4)2 − 2z′2 = 1/4.

If we multiply both sides by 4 and make the change of coordinates

x′ = x′′, y′ = y′′ −
√

2/4, z′ = z′′,

we get the equation
4x′′2 + 8y′′2 − 8z′′2 = 1

in the x′′y′′z′′-coordinate system. This is quadric surface is a hyperboloid of one sheet with
center of symmetry O′′. The center of symmetry has coordinates (−1/4,+1/4, 0) in the
xy-coordinate system. The unit points I ′′, J ′′, K ′′ have xy-coordinates

(1/
√

3−1/4,−1/
√

3+1/4, 0), (1/
√

2−1/4, 1/
√

2+1/4, 0), (1/
√

6−1/4, 1/
√

6+1/4,−2/
√

6).
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We could have eliminated completion of squares from the above example by first trans-
lating the origin to the center of the quadric. As the case for central conics, there is a system
of linear equations which have the center of a central quadric as the unique solution. Let

q = Ax2 + 2Bxy + 2Cxz + Dy2 + 2Eyz + Fz2 + Gx + Hy + Kz + L = 0

be a quadric surface with associated quadratic form

q0 = Ax2 + 2Bxy + 2Cxz + Dy2 + 2Eyz + Fz2

and let

∆ =

∣∣∣∣∣∣

A B C
B D E
C E F

∣∣∣∣∣∣
be the determinant of the matrix M of q0. Since det(M) is the product of the eigenvalues
of M , the quadric surface q = 0 is central if and only if ∆ 6= 0. If ∆ > 0, it is of elliptic
type (ellipsoid, point or empty) and if ∆ < 0, it is a hyperboloid.

Theorem 8.12. If q = 0 is a central quadric, (x0, y0, z0) is the unique solution of the system
of equations

Ax + By + Cz = −G/2
Bx + Dy + Ez = −H/2
Cx + Ey + Fz = −K/2

and x′ = x− x0, y′ = y − y0, z′ = z − z0 then

q = q0(x′, y′, z′) + q(x0, y0, z0).

In particular, (x0, y0, z0) are the coordinates of the centre of the quadric surface q = 0.

Proof. If we make the change of coordinates x = x0 + x′, y = y0 + y′, z = z0 + z′ we
have

q = q0(x′, y′, z′) + 2(Ax0 + By0 + Cz0 + G/2)x′ + 2(Bx0 + Dy0 + Ez0 + H/2)y′ +
2(Cx0 + Ey0 + Fz0 + K/2)z′ + q(x0, y0, z0).

Q.E.D.

Example. In example 2 above we have

∆ =

∣∣∣∣∣∣

1 −1 1
−1 1 1

1 1 −1

∣∣∣∣∣∣
= −4.

So the surface is a hyperboloid, or a cone, with center the unique solution of the system

x− y + z = −1/2
−x + y + z = 1/2

x + y − 1 = 0.

This solution is (−1/4, 1/4, 0). Translating our coordinate system to this point, we get a
coordinate system x′, y′, z′ in which our quadric has equation

x′2 − 2x′y′ + y′2 + 2y′z′ − z′2 = 1/4
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which shows that the surface is a hyperboloid. The change of coordinates

x′ = x′′/
√

3 + y′′/
√

2 + z′′/
√

6

y′ = x′′/
√

3− y′′/
√

2 + z′′/
√

6

y′ = x′′/
√

3− 2z′′/
√

6

transforms the above equation into

x′′2 + 2y′′2 − 2z′′2 = 1/4

showing that the surface is a hyperboloid of one-sheet.


